Transformer-based Speech Recognition Models for Oral History Archives in English, German, and Czech
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F23%3A43969686" target="_blank" >RIV/49777513:23520/23:43969686 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.isca-speech.org/archive/interspeech_2023/lehecka23_interspeech.html" target="_blank" >https://www.isca-speech.org/archive/interspeech_2023/lehecka23_interspeech.html</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.21437/Interspeech.2023-872" target="_blank" >10.21437/Interspeech.2023-872</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Transformer-based Speech Recognition Models for Oral History Archives in English, German, and Czech
Popis výsledku v původním jazyce
This paper is a step forward in our effort to make vast oral history archives more accessible to the public and researchers by breaking down the decoding barriers between the knowledge encoded in the spoken testimonies and users who want to search for the information of their interest. We present new Transformer-based monolingual models suitable for speech recognition of oral history archives in English, German, and Czech. Our experiments show that although the all-purpose speech recognition systems have recently made tremendous progress, the transcription of oral history archives is still a challenging task for them; our tailored models significantly outperformed larger public multilingual models and scored new state-of-the-art results on all tested datasets. Due to the 2-phase fine-tuning process, our models are robust and can be used for oral history archives of various domains. We publicly release our models within a public speech recognition service.
Název v anglickém jazyce
Transformer-based Speech Recognition Models for Oral History Archives in English, German, and Czech
Popis výsledku anglicky
This paper is a step forward in our effort to make vast oral history archives more accessible to the public and researchers by breaking down the decoding barriers between the knowledge encoded in the spoken testimonies and users who want to search for the information of their interest. We present new Transformer-based monolingual models suitable for speech recognition of oral history archives in English, German, and Czech. Our experiments show that although the all-purpose speech recognition systems have recently made tremendous progress, the transcription of oral history archives is still a challenging task for them; our tailored models significantly outperformed larger public multilingual models and scored new state-of-the-art results on all tested datasets. Due to the 2-phase fine-tuning process, our models are robust and can be used for oral history archives of various domains. We publicly release our models within a public speech recognition service.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
20205 - Automation and control systems
Návaznosti výsledku
Projekt
<a href="/cs/project/GA22-27800S" target="_blank" >GA22-27800S: Využití vícemodálních Transformerů pro přirozenější hlasový dialog</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of the Annual Conference of the International Speech Communication Association, INTERSPEECH
ISBN
—
ISSN
2308-457X
e-ISSN
—
Počet stran výsledku
5
Strana od-do
201-205
Název nakladatele
International Speech Communication Association
Místo vydání
New York
Místo konání akce
Dublin, Ireland
Datum konání akce
20. 8. 2023
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—