Overview of LifeCLEF 2023: evaluation of AI models for the identification and prediction of birds, plants, snakes and fungi
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F23%3A43969693" target="_blank" >RIV/49777513:23520/23:43969693 - isvavai.cz</a>
Výsledek na webu
<a href="https://link.springer.com/chapter/10.1007/978-3-031-42448-9_27" target="_blank" >https://link.springer.com/chapter/10.1007/978-3-031-42448-9_27</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-031-42448-9_27" target="_blank" >10.1007/978-3-031-42448-9_27</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Overview of LifeCLEF 2023: evaluation of AI models for the identification and prediction of birds, plants, snakes and fungi
Popis výsledku v původním jazyce
Biodiversity monitoring through AI approaches is essential, as it enables the efficient analysis of vast amounts of data, providing comprehensive insights into species distribution and ecosystem health and aiding in informed conservation decisions. Species identification based on images and sounds, in particular, is invaluable for facilitating biodiversity monitoring efforts and enabling prompt conservation actions to protect threatened and endangered species. The LifeCLEF virtual lab has been promoting and evaluating advances in this domain since 2011. The 2023 edition proposes five data-oriented challenges related to the identification and prediction of biodiversity: (i),BirdCLEF: bird species recognition in long-term audio recordings (soundscapes), (ii),mbox{SnakeCLEF:} snake identification inmedically important scenarios, (iii),PlantCLEF: very large-scale plant identification, (iv),mbox{FungiCLEF:} fungi recognition beyond0-1 cost, and (v),GeoLifeCLEF: remote sensing-based prediction of species. This paper overviews the motivation, methodology, and main outcomes of that five challenges.
Název v anglickém jazyce
Overview of LifeCLEF 2023: evaluation of AI models for the identification and prediction of birds, plants, snakes and fungi
Popis výsledku anglicky
Biodiversity monitoring through AI approaches is essential, as it enables the efficient analysis of vast amounts of data, providing comprehensive insights into species distribution and ecosystem health and aiding in informed conservation decisions. Species identification based on images and sounds, in particular, is invaluable for facilitating biodiversity monitoring efforts and enabling prompt conservation actions to protect threatened and endangered species. The LifeCLEF virtual lab has been promoting and evaluating advances in this domain since 2011. The 2023 edition proposes five data-oriented challenges related to the identification and prediction of biodiversity: (i),BirdCLEF: bird species recognition in long-term audio recordings (soundscapes), (ii),mbox{SnakeCLEF:} snake identification inmedically important scenarios, (iii),PlantCLEF: very large-scale plant identification, (iv),mbox{FungiCLEF:} fungi recognition beyond0-1 cost, and (v),GeoLifeCLEF: remote sensing-based prediction of species. This paper overviews the motivation, methodology, and main outcomes of that five challenges.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
20205 - Automation and control systems
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Experimental IR Meets Multilinguality, Multimodality, and Interaction 14th International Conference of the CLEF Association, CLEF 2023, Thessaloniki, Greece, September 18–21, 2023, Proceedings
ISBN
978-3-031-42447-2
ISSN
0302-9743
e-ISSN
1611-3349
Počet stran výsledku
24
Strana od-do
416-439
Název nakladatele
Springer
Místo vydání
Cham
Místo konání akce
Thessaloniki, Řecko
Datum konání akce
18. 9. 2023
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—