Geometric Shape Characterisation Based on a Multi-Sweeping Paradigm
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F23%3A43969963" target="_blank" >RIV/49777513:23520/23:43969963 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.mdpi.com/2073-8994/15/6/1212" target="_blank" >https://www.mdpi.com/2073-8994/15/6/1212</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/sym15061212" target="_blank" >10.3390/sym15061212</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Geometric Shape Characterisation Based on a Multi-Sweeping Paradigm
Popis výsledku v původním jazyce
The characterisation of geometric shapes produces their concise description and is, therefore, important for subsequent analyses, for example in Computer Vision, Machine Learning, or shape matching. A new method for extracting characterisation vectors of 2D geometric shapes is proposed in this paper. The shape of interest, embedded into a raster space, is swept several times by sweeplines having different slopes. The interior shape’s points, being in the middle of its boundary and laying on the actual sweep-line, are identified at each stage of the sweeping process. The midpoints are then connected iteratively into chains. The chains are filtered, vectorised, and normalised. The obtained polylines from the vectorisation step are used to design the shape’s characterisation vector for further application-specific analyses. The proposed method was verified on numerous shapes, where single- and multi-threaded implementations were compared. Finally, characterisation vectors, among which some were rotated and scaled, were determined for these shapes. The proposed method demonstrated a good rotation- and scaling-invariant identification of equal shapes.
Název v anglickém jazyce
Geometric Shape Characterisation Based on a Multi-Sweeping Paradigm
Popis výsledku anglicky
The characterisation of geometric shapes produces their concise description and is, therefore, important for subsequent analyses, for example in Computer Vision, Machine Learning, or shape matching. A new method for extracting characterisation vectors of 2D geometric shapes is proposed in this paper. The shape of interest, embedded into a raster space, is swept several times by sweeplines having different slopes. The interior shape’s points, being in the middle of its boundary and laying on the actual sweep-line, are identified at each stage of the sweeping process. The midpoints are then connected iteratively into chains. The chains are filtered, vectorised, and normalised. The obtained polylines from the vectorisation step are used to design the shape’s characterisation vector for further application-specific analyses. The proposed method was verified on numerous shapes, where single- and multi-threaded implementations were compared. Finally, characterisation vectors, among which some were rotated and scaled, were determined for these shapes. The proposed method demonstrated a good rotation- and scaling-invariant identification of equal shapes.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/GF21-08009K" target="_blank" >GF21-08009K: Zobecněné symetrie a ekvivalence geometrických dat</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Symmetry
ISSN
2073-8994
e-ISSN
2073-8994
Svazek periodika
15
Číslo periodika v rámci svazku
6
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
15
Strana od-do
1-15
Kód UT WoS článku
001017821600001
EID výsledku v databázi Scopus
2-s2.0-85163706628