Homogenization of the acoustic transmission on periodically perforated plates interacting with potential mean flow
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F24%3A43969212" target="_blank" >RIV/49777513:23520/24:43969212 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1016/j.cam.2023.115509" target="_blank" >https://doi.org/10.1016/j.cam.2023.115509</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.cam.2023.115509" target="_blank" >10.1016/j.cam.2023.115509</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Homogenization of the acoustic transmission on periodically perforated plates interacting with potential mean flow
Popis výsledku v původním jazyce
The paper is devoted to the homogenization of the acoustic waves interacting with background steady inviscid and irrotational flow in the neighbourhood of rigid peri- odically perforated plates. We present a model of an acoustic interface obtained by the asymptotic homogenization of a thin transmission layer in which the plate is embedded. To account for the presence of the mean flow, a decomposition of the fluid pressure and velocity in the steady and fluctuating parts is employed. This leads to a linearization and an efficient use of the homogenization method with the model order reduction effect. The acoustic perturbations of the velocity potential are governed by an extended wave equation depending on the advection velocity due to the mean flow. The coefficients of the homogenized interface depend on the flow. The derived model extended by natural coupling conditions provides an implicit Dirichlet-to-Neumann operator. Numerical simulations of wave propagation in a waveguide illustrate the flow speed influence on the acoustic transmission. Also geometrical features of the plate perforation are explored.
Název v anglickém jazyce
Homogenization of the acoustic transmission on periodically perforated plates interacting with potential mean flow
Popis výsledku anglicky
The paper is devoted to the homogenization of the acoustic waves interacting with background steady inviscid and irrotational flow in the neighbourhood of rigid peri- odically perforated plates. We present a model of an acoustic interface obtained by the asymptotic homogenization of a thin transmission layer in which the plate is embedded. To account for the presence of the mean flow, a decomposition of the fluid pressure and velocity in the steady and fluctuating parts is employed. This leads to a linearization and an efficient use of the homogenization method with the model order reduction effect. The acoustic perturbations of the velocity potential are governed by an extended wave equation depending on the advection velocity due to the mean flow. The coefficients of the homogenized interface depend on the flow. The derived model extended by natural coupling conditions provides an implicit Dirichlet-to-Neumann operator. Numerical simulations of wave propagation in a waveguide illustrate the flow speed influence on the acoustic transmission. Also geometrical features of the plate perforation are explored.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20302 - Applied mechanics
Návaznosti výsledku
Projekt
<a href="/cs/project/GA21-16406S" target="_blank" >GA21-16406S: Nelineární akustika a transportní procesy v porézních periodických strukturách</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS
ISSN
0377-0427
e-ISSN
1879-1778
Svazek periodika
438
Číslo periodika v rámci svazku
1 March 2024
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
18
Strana od-do
—
Kód UT WoS článku
001073279700001
EID výsledku v databázi Scopus
2-s2.0-85170271354