Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Satellite gravimetry: Methods, products, applications, and future trends

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F24%3A43971783" target="_blank" >RIV/49777513:23520/24:43971783 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://doi.org/10.1016/j.earscirev.2024.104783" target="_blank" >https://doi.org/10.1016/j.earscirev.2024.104783</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.earscirev.2024.104783" target="_blank" >10.1016/j.earscirev.2024.104783</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Satellite gravimetry: Methods, products, applications, and future trends

  • Popis výsledku v původním jazyce

    The gravitational field of the Earth reflects its inner structure and dynamics. Satellite gravimetry techniques have been used to observe the Earth&apos;s external gravitational field and its temporal variations on a global scale. The global gravitational models from satellite gravimetry, typically in terms of spherical harmonic coefficients, are crucial in geodetic, geodynamic, geophysical, hydrological, glaciological, oceanographic, and many other geoscience applications. In this paper, we provide a comprehensive overview of theoretical definitions describing relationships between the spherical harmonic coefficients and different satellite gravimetry observables such as orbital perturbations in terms of satellite positions, velocities, and accelerations; satellite-to-satellite range rates; and gravitational gradients. Applications of the Earth&apos;s static global gravitational models are presented and discussed in the context of determination of the gravimetric geoid and physical heights, gravimetric and isostatic crustal thickness, bathymetric depths, glacier bedrock relief, sediment thickness, geostrophic and eddy currents, Earth&apos;s inertia tensor and dipole, precession and nutation parameters of the Earth&apos;s rotation, and prediction of the satellite orbital geometry. Furthermore, applications and advances of the Earth&apos;s time-variable gravitational models for monitoring of large earthquakes, hydrological mass transport, Earth&apos;s rotation parameters, and vertical crustal motions (due to the glacial isostatic adjustment and other phenomena) are presented. Finally, future trends in the satellite gravimetry are discussed.

  • Název v anglickém jazyce

    Satellite gravimetry: Methods, products, applications, and future trends

  • Popis výsledku anglicky

    The gravitational field of the Earth reflects its inner structure and dynamics. Satellite gravimetry techniques have been used to observe the Earth&apos;s external gravitational field and its temporal variations on a global scale. The global gravitational models from satellite gravimetry, typically in terms of spherical harmonic coefficients, are crucial in geodetic, geodynamic, geophysical, hydrological, glaciological, oceanographic, and many other geoscience applications. In this paper, we provide a comprehensive overview of theoretical definitions describing relationships between the spherical harmonic coefficients and different satellite gravimetry observables such as orbital perturbations in terms of satellite positions, velocities, and accelerations; satellite-to-satellite range rates; and gravitational gradients. Applications of the Earth&apos;s static global gravitational models are presented and discussed in the context of determination of the gravimetric geoid and physical heights, gravimetric and isostatic crustal thickness, bathymetric depths, glacier bedrock relief, sediment thickness, geostrophic and eddy currents, Earth&apos;s inertia tensor and dipole, precession and nutation parameters of the Earth&apos;s rotation, and prediction of the satellite orbital geometry. Furthermore, applications and advances of the Earth&apos;s time-variable gravitational models for monitoring of large earthquakes, hydrological mass transport, Earth&apos;s rotation parameters, and vertical crustal motions (due to the glacial isostatic adjustment and other phenomena) are presented. Finally, future trends in the satellite gravimetry are discussed.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10508 - Physical geography

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GA21-13713S" target="_blank" >GA21-13713S: Odhady nejistot pro integrální transformace v geodézii</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Earth-Science Reviews

  • ISSN

    0012-8252

  • e-ISSN

    1872-6828

  • Svazek periodika

    253

  • Číslo periodika v rámci svazku

    June 2024

  • Stát vydavatele periodika

    NL - Nizozemsko

  • Počet stran výsledku

    30

  • Strana od-do

  • Kód UT WoS článku

    001236754800001

  • EID výsledku v databázi Scopus

    2-s2.0-85191519919