Satellite gravimetry: Methods, products, applications, and future trends
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F24%3A43971783" target="_blank" >RIV/49777513:23520/24:43971783 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1016/j.earscirev.2024.104783" target="_blank" >https://doi.org/10.1016/j.earscirev.2024.104783</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.earscirev.2024.104783" target="_blank" >10.1016/j.earscirev.2024.104783</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Satellite gravimetry: Methods, products, applications, and future trends
Popis výsledku v původním jazyce
The gravitational field of the Earth reflects its inner structure and dynamics. Satellite gravimetry techniques have been used to observe the Earth's external gravitational field and its temporal variations on a global scale. The global gravitational models from satellite gravimetry, typically in terms of spherical harmonic coefficients, are crucial in geodetic, geodynamic, geophysical, hydrological, glaciological, oceanographic, and many other geoscience applications. In this paper, we provide a comprehensive overview of theoretical definitions describing relationships between the spherical harmonic coefficients and different satellite gravimetry observables such as orbital perturbations in terms of satellite positions, velocities, and accelerations; satellite-to-satellite range rates; and gravitational gradients. Applications of the Earth's static global gravitational models are presented and discussed in the context of determination of the gravimetric geoid and physical heights, gravimetric and isostatic crustal thickness, bathymetric depths, glacier bedrock relief, sediment thickness, geostrophic and eddy currents, Earth's inertia tensor and dipole, precession and nutation parameters of the Earth's rotation, and prediction of the satellite orbital geometry. Furthermore, applications and advances of the Earth's time-variable gravitational models for monitoring of large earthquakes, hydrological mass transport, Earth's rotation parameters, and vertical crustal motions (due to the glacial isostatic adjustment and other phenomena) are presented. Finally, future trends in the satellite gravimetry are discussed.
Název v anglickém jazyce
Satellite gravimetry: Methods, products, applications, and future trends
Popis výsledku anglicky
The gravitational field of the Earth reflects its inner structure and dynamics. Satellite gravimetry techniques have been used to observe the Earth's external gravitational field and its temporal variations on a global scale. The global gravitational models from satellite gravimetry, typically in terms of spherical harmonic coefficients, are crucial in geodetic, geodynamic, geophysical, hydrological, glaciological, oceanographic, and many other geoscience applications. In this paper, we provide a comprehensive overview of theoretical definitions describing relationships between the spherical harmonic coefficients and different satellite gravimetry observables such as orbital perturbations in terms of satellite positions, velocities, and accelerations; satellite-to-satellite range rates; and gravitational gradients. Applications of the Earth's static global gravitational models are presented and discussed in the context of determination of the gravimetric geoid and physical heights, gravimetric and isostatic crustal thickness, bathymetric depths, glacier bedrock relief, sediment thickness, geostrophic and eddy currents, Earth's inertia tensor and dipole, precession and nutation parameters of the Earth's rotation, and prediction of the satellite orbital geometry. Furthermore, applications and advances of the Earth's time-variable gravitational models for monitoring of large earthquakes, hydrological mass transport, Earth's rotation parameters, and vertical crustal motions (due to the glacial isostatic adjustment and other phenomena) are presented. Finally, future trends in the satellite gravimetry are discussed.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10508 - Physical geography
Návaznosti výsledku
Projekt
<a href="/cs/project/GA21-13713S" target="_blank" >GA21-13713S: Odhady nejistot pro integrální transformace v geodézii</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Earth-Science Reviews
ISSN
0012-8252
e-ISSN
1872-6828
Svazek periodika
253
Číslo periodika v rámci svazku
June 2024
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
30
Strana od-do
—
Kód UT WoS článku
001236754800001
EID výsledku v databázi Scopus
2-s2.0-85191519919