Transient response of non-prismatic heterogeneous viscoelastic rods and identification of their material properties
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F24%3A43971807" target="_blank" >RIV/49777513:23520/24:43971807 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S0997753824000214" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0997753824000214</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.euromechsol.2024.105241" target="_blank" >10.1016/j.euromechsol.2024.105241</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Transient response of non-prismatic heterogeneous viscoelastic rods and identification of their material properties
Popis výsledku v původním jazyce
Pulse propagation in homogeneous and heterogeneous viscoelastic thin rods of a constant or variable cross-section is investigated in this work using analytical, numerical and experimental methods. Based on the elementary theory of thin rods, the model for pulse propagation in a layered non-prismatic rod is derived and solved in the Laplace domain. Using the numerical inverse Laplace transform, semi-analytical transient solutions for both homogeneous, layered and functionally graded viscoelastic prismatic or non-prismatic rods are obtained. The parameters of the generalised Zener model (GZM) are then identified by solving the problem of parametric optimisation in Matlab and utilising the transient acceleration responses measured for rods of different types and different material properties (POM-C, PC1000, PP, PVC, PET, PLA and aluminium). A great agreement between the measured signals and the responses calculated for GZM with different numbers of relaxation times was achieved. Next, the dynamic properties of selected prismatic and non-prismatic rods have been studied. The dispersion and attenuation curves for both homogeneous and layered rods are reconstructed from the measured signal using a method adopted from the literature. The obtained results are then discussed in the context of the theoretical curves resulted from the elementary rod theory and from the theory that takes into account the lateral motions of the rod.
Název v anglickém jazyce
Transient response of non-prismatic heterogeneous viscoelastic rods and identification of their material properties
Popis výsledku anglicky
Pulse propagation in homogeneous and heterogeneous viscoelastic thin rods of a constant or variable cross-section is investigated in this work using analytical, numerical and experimental methods. Based on the elementary theory of thin rods, the model for pulse propagation in a layered non-prismatic rod is derived and solved in the Laplace domain. Using the numerical inverse Laplace transform, semi-analytical transient solutions for both homogeneous, layered and functionally graded viscoelastic prismatic or non-prismatic rods are obtained. The parameters of the generalised Zener model (GZM) are then identified by solving the problem of parametric optimisation in Matlab and utilising the transient acceleration responses measured for rods of different types and different material properties (POM-C, PC1000, PP, PVC, PET, PLA and aluminium). A great agreement between the measured signals and the responses calculated for GZM with different numbers of relaxation times was achieved. Next, the dynamic properties of selected prismatic and non-prismatic rods have been studied. The dispersion and attenuation curves for both homogeneous and layered rods are reconstructed from the measured signal using a method adopted from the literature. The obtained results are then discussed in the context of the theoretical curves resulted from the elementary rod theory and from the theory that takes into account the lateral motions of the rod.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20302 - Applied mechanics
Návaznosti výsledku
Projekt
<a href="/cs/project/GF22-00863K" target="_blank" >GF22-00863K: Řiditelné metamateriály a chytré struktury: Nelineární problémy, modelování a experimenty</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
EUROPEAN JOURNAL OF MECHANICS A-SOLIDS
ISSN
0997-7538
e-ISSN
1873-7285
Svazek periodika
105
Číslo periodika v rámci svazku
MAY-JUN 2024
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
17
Strana od-do
—
Kód UT WoS článku
001172272600001
EID výsledku v databázi Scopus
2-s2.0-85183455917