Cubic graphs with colouring defect 3
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F24%3A43971932" target="_blank" >RIV/49777513:23520/24:43971932 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.combinatorics.org/ojs/index.php/eljc/article/view/v31i2p6" target="_blank" >https://www.combinatorics.org/ojs/index.php/eljc/article/view/v31i2p6</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.37236/12333" target="_blank" >10.37236/12333</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Cubic graphs with colouring defect 3
Popis výsledku v původním jazyce
The colouring defect of a cubic graph is the smallest number of edges left uncovered by any set of three perfect matchings. While 3-edge-colourable graphs have defect 0, those that cannot be 3-edge-coloured (that is, snarks) are known to have defect at least 3. In this paper we focus on the structure and properties of snarks with defect 3. For such snarks we develop a theory of reductions similar to standard reductions of short cycles and small cuts in general snarks. We prove that every snark with defect 3 can be reduced to a snark with defect 3 which is either nontrivial (cyclically 4-edge-connected and of girth at least 5) or to one that arises from a nontrivial snark of defect greater than 3 by inflating a vertex lying on a suitable 5-cycle to a triangle. The proofs rely on a detailed analysis of Fano flows associated with triples of perfect matchings leaving exactly three uncovered edges. In the final part of the paper we discuss application of our results to the conjectures of Berge and Fulkerson, which provide the main motivation for our research.
Název v anglickém jazyce
Cubic graphs with colouring defect 3
Popis výsledku anglicky
The colouring defect of a cubic graph is the smallest number of edges left uncovered by any set of three perfect matchings. While 3-edge-colourable graphs have defect 0, those that cannot be 3-edge-coloured (that is, snarks) are known to have defect at least 3. In this paper we focus on the structure and properties of snarks with defect 3. For such snarks we develop a theory of reductions similar to standard reductions of short cycles and small cuts in general snarks. We prove that every snark with defect 3 can be reduced to a snark with defect 3 which is either nontrivial (cyclically 4-edge-connected and of girth at least 5) or to one that arises from a nontrivial snark of defect greater than 3 by inflating a vertex lying on a suitable 5-cycle to a triangle. The proofs rely on a detailed analysis of Fano flows associated with triples of perfect matchings leaving exactly three uncovered edges. In the final part of the paper we discuss application of our results to the conjectures of Berge and Fulkerson, which provide the main motivation for our research.
Klasifikace
Druh
J<sub>SC</sub> - Článek v periodiku v databázi SCOPUS
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Electronic Journal of Combinatorics
ISSN
1097-1440
e-ISSN
1077-8926
Svazek periodika
31
Číslo periodika v rámci svazku
2
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
32
Strana od-do
1-32
Kód UT WoS článku
—
EID výsledku v databázi Scopus
2-s2.0-85189897462