Activity-Based Detection of (Anti-)Patterns: An Embedded Case Study of the Fire Drill
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F24%3A43971999" target="_blank" >RIV/49777513:23520/24:43971999 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-6/" target="_blank" >https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-6/</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.37190/e-Inf240106" target="_blank" >10.37190/e-Inf240106</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Activity-Based Detection of (Anti-)Patterns: An Embedded Case Study of the Fire Drill
Popis výsledku v původním jazyce
Background: Nowadays, expensive, error-prone, expert-based evaluations are needed to identify and assess software process anti-patterns. Process artifacts cannot be automatically used to quantitatively analyze and train prediction models without exact ground truth. Aim: Develop a replicable methodology for organizational learning from process (anti-)patterns, demonstrating the mining of reliable ground truth and exploitation of process artifacts. Method: We conduct an embedded case study to find manifestations of the Fire Drill anti-pattern in n = 15 projects. To ensure quality, three human experts agree. Their evaluation and the process’ artifacts are utilized to establish a quantitative understanding and train a prediction model. Results: Qualitative review shows many project issues. (i) Expert assessments consistently provide credible ground truth. (ii) Fire Drill phenomenological descriptions match project activity time (for example, development). (iii) Regression models trained on ≈ 12–25 examples are sufficiently stable. Conclusion: The approach is data source-independent (source code or issue-tracking). It allows leveraging process artifacts for establishing additional phenomenon knowledge and training robust predictive models. The results indicate the aptness of the methodology for the identification of the Fire Drill and similar anti-pattern instances modeled using activities. Such identification could be used in post mortem process analysis supporting organizational learning for improving processes.
Název v anglickém jazyce
Activity-Based Detection of (Anti-)Patterns: An Embedded Case Study of the Fire Drill
Popis výsledku anglicky
Background: Nowadays, expensive, error-prone, expert-based evaluations are needed to identify and assess software process anti-patterns. Process artifacts cannot be automatically used to quantitatively analyze and train prediction models without exact ground truth. Aim: Develop a replicable methodology for organizational learning from process (anti-)patterns, demonstrating the mining of reliable ground truth and exploitation of process artifacts. Method: We conduct an embedded case study to find manifestations of the Fire Drill anti-pattern in n = 15 projects. To ensure quality, three human experts agree. Their evaluation and the process’ artifacts are utilized to establish a quantitative understanding and train a prediction model. Results: Qualitative review shows many project issues. (i) Expert assessments consistently provide credible ground truth. (ii) Fire Drill phenomenological descriptions match project activity time (for example, development). (iii) Regression models trained on ≈ 12–25 examples are sufficiently stable. Conclusion: The approach is data source-independent (source code or issue-tracking). It allows leveraging process artifacts for establishing additional phenomenon knowledge and training robust predictive models. The results indicate the aptness of the methodology for the identification of the Fire Drill and similar anti-pattern instances modeled using activities. Such identification could be used in post mortem process analysis supporting organizational learning for improving processes.
Klasifikace
Druh
J<sub>SC</sub> - Článek v periodiku v databázi SCOPUS
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/EF17_048%2F0007267" target="_blank" >EF17_048/0007267: VaV inteligentních komponent pokročilých technologií pro plzeňskou metropolitní oblast</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
e-Informatica Software Engineering Journal (EISEJ)
ISSN
1897-7979
e-ISSN
2084-4840
Svazek periodika
18
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
PL - Polská republika
Počet stran výsledku
49
Strana od-do
—
Kód UT WoS článku
001229559900001
EID výsledku v databázi Scopus
2-s2.0-85188276370