Unveiling the Effectiveness of NLP-based DL Methods for Urdu Text Analysis
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F24%3A43972891" target="_blank" >RIV/49777513:23520/24:43972891 - isvavai.cz</a>
Výsledek na webu
<a href="https://link.springer.com/chapter/10.1007/978-3-031-75329-9_12" target="_blank" >https://link.springer.com/chapter/10.1007/978-3-031-75329-9_12</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-031-75329-9_12" target="_blank" >10.1007/978-3-031-75329-9_12</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Unveiling the Effectiveness of NLP-based DL Methods for Urdu Text Analysis
Popis výsledku v původním jazyce
The analysis of text data has become a significant challenge while its size is gradually increasing in massive amounts. Various textual analysis methods exist, dealing with different processing styles due to multiple data types, mainly for English. Therefore, the other low-resource languages are difficult to process due to the unavailability of intelligent methods. Similarly, Urdu, as a low-resource language, requires effective methods based on machine learning or deep learning mechanisms. Our study has identified the rarely used pure Urdu text dataset, an effective combination of embeddings, and the best combination of hyperparameters for DL methods trained on that dataset. According to the evaluation results, our study has also determined the best methods regarding embeddings, hyperparameters, and overall performance. Moreover, combining pre-trained BERT embeddings with the fine-tuned BiLSTM and BERT was the best method to cope with Urdu as a low-resource language. As per the findings, our study recommends the pre-trained embedding models and hyperparameters settings for Urdu text classification analysis.
Název v anglickém jazyce
Unveiling the Effectiveness of NLP-based DL Methods for Urdu Text Analysis
Popis výsledku anglicky
The analysis of text data has become a significant challenge while its size is gradually increasing in massive amounts. Various textual analysis methods exist, dealing with different processing styles due to multiple data types, mainly for English. Therefore, the other low-resource languages are difficult to process due to the unavailability of intelligent methods. Similarly, Urdu, as a low-resource language, requires effective methods based on machine learning or deep learning mechanisms. Our study has identified the rarely used pure Urdu text dataset, an effective combination of embeddings, and the best combination of hyperparameters for DL methods trained on that dataset. According to the evaluation results, our study has also determined the best methods regarding embeddings, hyperparameters, and overall performance. Moreover, combining pre-trained BERT embeddings with the fine-tuned BiLSTM and BERT was the best method to cope with Urdu as a low-resource language. As per the findings, our study recommends the pre-trained embedding models and hyperparameters settings for Urdu text classification analysis.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/LM2018140" target="_blank" >LM2018140: e-Infrastruktura CZ</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Information Systems and Technological Advances for Sustainable Development. Lecture Notes in Information Systems and Organisation
ISBN
978-3-031-75328-2
ISSN
2195-4968
e-ISSN
2195-4976
Počet stran výsledku
12
Strana od-do
102-113
Název nakladatele
Springer Cham
Místo vydání
Cham
Místo konání akce
Košice
Datum konání akce
27. 5. 2024
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—