SeaTurtleID2022: A long-span dataset for reliable sea turtle re-identification
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F24%3A43972919" target="_blank" >RIV/49777513:23520/24:43972919 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/68407700:21230/24:00377619
Výsledek na webu
<a href="https://ieeexplore.ieee.org/document/10484106" target="_blank" >https://ieeexplore.ieee.org/document/10484106</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/WACV57701.2024.00699" target="_blank" >10.1109/WACV57701.2024.00699</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
SeaTurtleID2022: A long-span dataset for reliable sea turtle re-identification
Popis výsledku v původním jazyce
This paper introduces the first public large-scale, long-span dataset with sea turtle photographs captured in the wild-SeaTurtleID2022. The dataset contains 8729 photographs of 438 unique individuals collected within 13 years, making it the longest-spanned dataset for animal re-identification. Each photograph includes various annotations, e.g., identity, encounter timestamp, and body parts segmentation masks. Instead of a standard ''random"split, the dataset allows for two realistic and ecologically motivated splits: (i) time-aware: a closed-set with training, validation, and test data from different days/years, and (ii) open-set: with new unknown individuals in test and validation sets. We show that time-aware splits are essential for benchmarking methods for re-identification, as random splits lead to performance overestimation. Furthermore, a baseline instance segmentation and re-identification performance over various body parts is provided. At last, an end-to-end system for sea turtle re-identification is proposed and evaluated. The proposed system based on Hybrid Task Cascade for head instance segmentation and ArcFace-trained feature-extractor achieved an accuracy of 86.8%.
Název v anglickém jazyce
SeaTurtleID2022: A long-span dataset for reliable sea turtle re-identification
Popis výsledku anglicky
This paper introduces the first public large-scale, long-span dataset with sea turtle photographs captured in the wild-SeaTurtleID2022. The dataset contains 8729 photographs of 438 unique individuals collected within 13 years, making it the longest-spanned dataset for animal re-identification. Each photograph includes various annotations, e.g., identity, encounter timestamp, and body parts segmentation masks. Instead of a standard ''random"split, the dataset allows for two realistic and ecologically motivated splits: (i) time-aware: a closed-set with training, validation, and test data from different days/years, and (ii) open-set: with new unknown individuals in test and validation sets. We show that time-aware splits are essential for benchmarking methods for re-identification, as random splits lead to performance overestimation. Furthermore, a baseline instance segmentation and re-identification performance over various body parts is provided. At last, an end-to-end system for sea turtle re-identification is proposed and evaluated. The proposed system based on Hybrid Task Cascade for head instance segmentation and ArcFace-trained feature-extractor achieved an accuracy of 86.8%.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
20205 - Automation and control systems
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
2024 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV)
ISBN
979-8-3503-1892-0
ISSN
2472-6737
e-ISSN
2642-9381
Počet stran výsledku
11
Strana od-do
7131-7141
Název nakladatele
Institute of Electrical and Electronics Engineers Inc.
Místo vydání
Piscataway
Místo konání akce
Waikoloa, HI, USA
Datum konání akce
3. 1. 2024
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
001222964607028