Towards Robust Time-Accurate Anisotropically Adaptive Hybridized Discontinuous Galerkin Method
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F24%3A43973299" target="_blank" >RIV/49777513:23520/24:43973299 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.iccfd.org/iccfd12/assets/pdf/papers/ICCFD12_Paper_8-C-01.pdf" target="_blank" >https://www.iccfd.org/iccfd12/assets/pdf/papers/ICCFD12_Paper_8-C-01.pdf</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Towards Robust Time-Accurate Anisotropically Adaptive Hybridized Discontinuous Galerkin Method
Popis výsledku v původním jazyce
Metric-based anisotropic mesh adaptation has proven effective for the solution of both steady and unsteady problems in terms of reduced computational time and accuracy gain. Especially for time-dependent problems, its generalization to implicit high-order space and time discretizations is, nevertheless, still a challenging task as it requires a great care to preserve consistency and stability of the numerical solution. In this regard, the objective of the present paper is twofold. First, to devise an accurate unsteady mesh adaptation algorithm, and second, to introduce a new solution transfer between anisotropic meshes, which preserves the local minima and maxima. Our findings are based on a hybridized discontinuous Galerkin (HDG) solver with diagonally implicit Runge-Kutta (DIRK) time integration, whereas the main focus is on problems for two-dimensional Euler equations including moving shocks.
Název v anglickém jazyce
Towards Robust Time-Accurate Anisotropically Adaptive Hybridized Discontinuous Galerkin Method
Popis výsledku anglicky
Metric-based anisotropic mesh adaptation has proven effective for the solution of both steady and unsteady problems in terms of reduced computational time and accuracy gain. Especially for time-dependent problems, its generalization to implicit high-order space and time discretizations is, nevertheless, still a challenging task as it requires a great care to preserve consistency and stability of the numerical solution. In this regard, the objective of the present paper is twofold. First, to devise an accurate unsteady mesh adaptation algorithm, and second, to introduce a new solution transfer between anisotropic meshes, which preserves the local minima and maxima. Our findings are based on a hybridized discontinuous Galerkin (HDG) solver with diagonally implicit Runge-Kutta (DIRK) time integration, whereas the main focus is on problems for two-dimensional Euler equations including moving shocks.
Klasifikace
Druh
O - Ostatní výsledky
CEP obor
—
OECD FORD obor
20302 - Applied mechanics
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů