Rainbow bases in matroids
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F24%3A43974792" target="_blank" >RIV/49777513:23520/24:43974792 - isvavai.cz</a>
Výsledek na webu
<a href="https://epubs.siam.org/doi/10.1137/22M1516750" target="_blank" >https://epubs.siam.org/doi/10.1137/22M1516750</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1137/22M1516750" target="_blank" >10.1137/22M1516750</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Rainbow bases in matroids
Popis výsledku v původním jazyce
Recently, it was proved by Bérczi and Schwarcz that the problem of factorizing a matroid into rainbow bases with respect to a given partition of its ground set is algorithmically intractable. On the other hand, many special cases were left open.We first show that the problem remains hard if the matroid is graphic, answering a question of Bérczi and Schwarcz. As another special case, we consider the problem of deciding whether a given digraph can be factorized into subgraphs which are spanning trees in the underlying sense and respect upper bounds on the indegree of every vertex. We prove that this problem is also hard. This answers a question of Frank.In the second part of the article, we deal with the relaxed problem of covering the ground set of a matroid by rainbow bases. Among other results, we show that there is a linear function f such that every matroid that can be factorized into k bases for some k≥3 can be covered by f(k) rainbow bases if every partition class contains at most 2 elements.
Název v anglickém jazyce
Rainbow bases in matroids
Popis výsledku anglicky
Recently, it was proved by Bérczi and Schwarcz that the problem of factorizing a matroid into rainbow bases with respect to a given partition of its ground set is algorithmically intractable. On the other hand, many special cases were left open.We first show that the problem remains hard if the matroid is graphic, answering a question of Bérczi and Schwarcz. As another special case, we consider the problem of deciding whether a given digraph can be factorized into subgraphs which are spanning trees in the underlying sense and respect upper bounds on the indegree of every vertex. We prove that this problem is also hard. This answers a question of Frank.In the second part of the article, we deal with the relaxed problem of covering the ground set of a matroid by rainbow bases. Among other results, we show that there is a linear function f such that every matroid that can be factorized into k bases for some k≥3 can be covered by f(k) rainbow bases if every partition class contains at most 2 elements.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
SIAM Journal on Discrete Mathematics
ISSN
0895-4801
e-ISSN
1095-7146
Svazek periodika
38
Číslo periodika v rámci svazku
2
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
20
Strana od-do
1472-1491
Kód UT WoS článku
001228166200003
EID výsledku v databázi Scopus
2-s2.0-85193826554