Recognition of radio broadcasted speech in a task with low perplexity and sparse training data
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F99%3A00041882" target="_blank" >RIV/49777513:23520/99:00041882 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Recognition of radio broadcasted speech in a task with low perplexity and sparse training data
Popis výsledku v původním jazyce
This paper describes an automatic recognition of a weather forecast transmitted by the Czech radio via the experimental speech recognition system being developed at the University of West Bohemia with support of the Johns Hopkins University. The experimental recognition system is designed as a speaker independent and is based on the HMM with mixture Gaussian continuous densities. A set of Czech phonological rules is used to provide phonetic transcription. Triphones and Czech phonetic decision trees areused to model a phonetic context. The system incorporates an n-gram language model. Two kinds of n-gram language model together with various smoothing techniques were tested to overcome very sparse trainingThe results of recognition experiments with twokinds of language models as well as with various language and acoustic model weights are presented in the paper.
Název v anglickém jazyce
Recognition of radio broadcasted speech in a task with low perplexity and sparse training data
Popis výsledku anglicky
This paper describes an automatic recognition of a weather forecast transmitted by the Czech radio via the experimental speech recognition system being developed at the University of West Bohemia with support of the Johns Hopkins University. The experimental recognition system is designed as a speaker independent and is based on the HMM with mixture Gaussian continuous densities. A set of Czech phonological rules is used to provide phonetic transcription. Triphones and Czech phonetic decision trees areused to model a phonetic context. The system incorporates an n-gram language model. Two kinds of n-gram language model together with various smoothing techniques were tested to overcome very sparse trainingThe results of recognition experiments with twokinds of language models as well as with various language and acoustic model weights are presented in the paper.
Klasifikace
Druh
C - Kapitola v odborné knize
CEP obor
JD - Využití počítačů, robotika a její aplikace
OECD FORD obor
—
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>Z - Vyzkumny zamer (s odkazem do CEZ)
Ostatní
Rok uplatnění
1999
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název knihy nebo sborníku
Recognition of radio broadcasted speech in a task with low perplexity and sparse training data
ISBN
—
Počet stran výsledku
1
Strana od-do
—
Počet stran knihy
—
Název nakladatele
x
Místo vydání
X
Kód UT WoS kapitoly
—