The Physical Kinetics of Reversible Thermal Decomposition
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23640%2F17%3A43950534" target="_blank" >RIV/49777513:23640/17:43950534 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1007/978-3-319-45899-1_17" target="_blank" >http://dx.doi.org/10.1007/978-3-319-45899-1_17</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-319-45899-1_17" target="_blank" >10.1007/978-3-319-45899-1_17</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
The Physical Kinetics of Reversible Thermal Decomposition
Popis výsledku v původním jazyce
A new theoretical basis, fitting thermal analysis of solids more adequately than the Arrhenius equation developed for reacting gas molecules, is proposed for gas-evolving reversible decompositions. Such complex processes are theoretically dissected into elementary steps, showing distinctions between microkinetics and macro-kinetics; only the slowest step being recordable thermoanalytically. Practical procedures of determination whether a thermoanalytical process is controlled by chemical kinetics on micro-level, or by physical macro-processes of heat- and gas-transport in the bulk, based on exposing the samples to changing degrees of heat transfer, and (separately) to the changing degree of exposure to the gaseous decomposition product, are postulated as a prerequisite before choosing the calculation model. It is shown that many typical processes of gas-evolving reversible decomposition are controlled not by chemical micro-kinetics, but by the physical processes of escaping of the gases and of the heat transfer. Even in smallest samples, the overlapping gradients of the temperature and of the gas concentration, plus two or three interwoven reaction fronts, invalidate micro-kinetic calculations and indicate that thermoanalytical data reflect globally the behavior of the sample as a whole, not of its individual grains or molecules—those two classes being completely different. The meaning of decomposition temperature is revisited. A family of TG curves obtained at the specified conditions enables distinguishing between the true decomposition temperature and the procedural one; only the latter being normally recorded. A pitfall of determination of decomposition temperature by CRTA is discussed. Implication for industrial processes are suggested.
Název v anglickém jazyce
The Physical Kinetics of Reversible Thermal Decomposition
Popis výsledku anglicky
A new theoretical basis, fitting thermal analysis of solids more adequately than the Arrhenius equation developed for reacting gas molecules, is proposed for gas-evolving reversible decompositions. Such complex processes are theoretically dissected into elementary steps, showing distinctions between microkinetics and macro-kinetics; only the slowest step being recordable thermoanalytically. Practical procedures of determination whether a thermoanalytical process is controlled by chemical kinetics on micro-level, or by physical macro-processes of heat- and gas-transport in the bulk, based on exposing the samples to changing degrees of heat transfer, and (separately) to the changing degree of exposure to the gaseous decomposition product, are postulated as a prerequisite before choosing the calculation model. It is shown that many typical processes of gas-evolving reversible decomposition are controlled not by chemical micro-kinetics, but by the physical processes of escaping of the gases and of the heat transfer. Even in smallest samples, the overlapping gradients of the temperature and of the gas concentration, plus two or three interwoven reaction fronts, invalidate micro-kinetic calculations and indicate that thermoanalytical data reflect globally the behavior of the sample as a whole, not of its individual grains or molecules—those two classes being completely different. The meaning of decomposition temperature is revisited. A family of TG curves obtained at the specified conditions enables distinguishing between the true decomposition temperature and the procedural one; only the latter being normally recorded. A pitfall of determination of decomposition temperature by CRTA is discussed. Implication for industrial processes are suggested.
Klasifikace
Druh
C - Kapitola v odborné knize
CEP obor
—
OECD FORD obor
10403 - Physical chemistry
Návaznosti výsledku
Projekt
<a href="/cs/project/LO1402" target="_blank" >LO1402: CENTEM+</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název knihy nebo sborníku
Thermal Physics and Thermal Analysis
ISBN
978-3-319-45897-7
Počet stran výsledku
22
Strana od-do
363-384
Počet stran knihy
567
Název nakladatele
Springer International Publishing
Místo vydání
Cham, Switzerland
Kód UT WoS kapitoly
—