Convergence study of isogeometric analysis based on Bézier extraction in electronic structure calculations
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23640%2F18%3A43950057" target="_blank" >RIV/49777513:23640/18:43950057 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/68378271:_____/18:00489342 RIV/67985807:_____/18:00489342 RIV/61388998:_____/18:00489342
Výsledek na webu
<a href="http://dx.doi.org/10.1016/j.amc.2017.02.023" target="_blank" >http://dx.doi.org/10.1016/j.amc.2017.02.023</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.amc.2017.02.023" target="_blank" >10.1016/j.amc.2017.02.023</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Convergence study of isogeometric analysis based on Bézier extraction in electronic structure calculations
Popis výsledku v původním jazyce
Behavior of various, even hypothetical, materials can be predicted via ab-initio electronic structure calculations providing all the necessary information: the total energy of the sys- tem and its derivatives. In case of non-periodic structures, the existing well-established methods for electronic structure calculations either use special bases, predetermining and limiting the shapes of wave functions, or require artificial computationally expensive ar- rangements, like large supercells. We developed a new method for non-periodic electronic structures based on the density functional theory, environment-reflecting pseudopotentials and the isogeometric analysis with Bézier extraction, ensuring continuity for all quantities up to the second derivative. The approach is especially suitable for calculating the total en- ergy derivatives and for molecular-dynamics simulations. Its main assets are the universal basis with the excellent convergence control and the capability to calculate precisely the non-periodic structures even lacking in charge neutrality. Within the present paper, con- vergence study for isogeometric analysis vs. standard finite-element approach is carried out and illustrated on sub-problems that appear in our electronic structure calculations method: the Poisson problem, the generalized eigenvalue problem and the density func- tional theory Kohn–Sham equations applied to a benchmark problem.
Název v anglickém jazyce
Convergence study of isogeometric analysis based on Bézier extraction in electronic structure calculations
Popis výsledku anglicky
Behavior of various, even hypothetical, materials can be predicted via ab-initio electronic structure calculations providing all the necessary information: the total energy of the sys- tem and its derivatives. In case of non-periodic structures, the existing well-established methods for electronic structure calculations either use special bases, predetermining and limiting the shapes of wave functions, or require artificial computationally expensive ar- rangements, like large supercells. We developed a new method for non-periodic electronic structures based on the density functional theory, environment-reflecting pseudopotentials and the isogeometric analysis with Bézier extraction, ensuring continuity for all quantities up to the second derivative. The approach is especially suitable for calculating the total en- ergy derivatives and for molecular-dynamics simulations. Its main assets are the universal basis with the excellent convergence control and the capability to calculate precisely the non-periodic structures even lacking in charge neutrality. Within the present paper, con- vergence study for isogeometric analysis vs. standard finite-element approach is carried out and illustrated on sub-problems that appear in our electronic structure calculations method: the Poisson problem, the generalized eigenvalue problem and the density func- tional theory Kohn–Sham equations applied to a benchmark problem.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10403 - Physical chemistry
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
APPLIED MATHEMATICS AND COMPUTATION
ISSN
0096-3003
e-ISSN
—
Svazek periodika
319
Číslo periodika v rámci svazku
FEB 15 2018
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
15
Strana od-do
138-152
Kód UT WoS článku
000415906200013
EID výsledku v databázi Scopus
2-s2.0-85014468888