Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Shifted laser surface texturing (sLST) in burst regime

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23640%2F18%3A43954223" target="_blank" >RIV/49777513:23640/18:43954223 - isvavai.cz</a>

  • Výsledek na webu

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Shifted laser surface texturing (sLST) in burst regime

  • Popis výsledku v původním jazyce

    High laser scanning speed and high precision are two opposite parameters for effective laser surface texturing (LST). Application of a sequence of laser pulses or bursts helps to increase the processing effectivity and speed, but precision control of laser pulses arriving becomes difficult task for micro-texturing. In this work, one possible solution for this dilemma is presented: scan-ning strategy named shifted laser surface texturing (sLST) in burst regime. This burst sLST repre-sents an alternative method, where inertia of galvanoscan mirrors becomes useful factor at higher speeds. Physical principles of laser bursts interaction with material surface and resulting subsurface thermal-stress fields are discussed. Heat accumulation was calculated from semi-planar mod-el of temperature distribution from laser spots in line of the burst. Residual subsurface tempera-ture and pressure is called positive heat accumulation in the case of minimal output roughness of laser scanned surfaces. Experimental application of the burst sLST was performed by picosecond laser with galvanoscan system. Results were evaluated by shape analysis of objects detected on contrast images of laser processed stainless steel surfaces. Deviation in sLST precision was deter-mined from larger and smaller diameter of detected microobjects on surface with LabIR coating. Roughness of depth structure in microobjects was controlled by contact surface profiler and com-pared with goal profile and positive heat accumulation distribution. Principal limitations of burst sLST and future possibilities for increasing scanning speed were discussed.

  • Název v anglickém jazyce

    Shifted laser surface texturing (sLST) in burst regime

  • Popis výsledku anglicky

    High laser scanning speed and high precision are two opposite parameters for effective laser surface texturing (LST). Application of a sequence of laser pulses or bursts helps to increase the processing effectivity and speed, but precision control of laser pulses arriving becomes difficult task for micro-texturing. In this work, one possible solution for this dilemma is presented: scan-ning strategy named shifted laser surface texturing (sLST) in burst regime. This burst sLST repre-sents an alternative method, where inertia of galvanoscan mirrors becomes useful factor at higher speeds. Physical principles of laser bursts interaction with material surface and resulting subsurface thermal-stress fields are discussed. Heat accumulation was calculated from semi-planar mod-el of temperature distribution from laser spots in line of the burst. Residual subsurface tempera-ture and pressure is called positive heat accumulation in the case of minimal output roughness of laser scanned surfaces. Experimental application of the burst sLST was performed by picosecond laser with galvanoscan system. Results were evaluated by shape analysis of objects detected on contrast images of laser processed stainless steel surfaces. Deviation in sLST precision was deter-mined from larger and smaller diameter of detected microobjects on surface with LabIR coating. Roughness of depth structure in microobjects was controlled by contact surface profiler and com-pared with goal profile and positive heat accumulation distribution. Principal limitations of burst sLST and future possibilities for increasing scanning speed were discussed.

Klasifikace

  • Druh

    O - Ostatní výsledky

  • CEP obor

  • OECD FORD obor

    10302 - Condensed matter physics (including formerly solid state physics, supercond.)

Návaznosti výsledku

  • Projekt

    Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2018

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů