Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Large magnetic gap at the Dirac point in Bi2Te3/MnBi2Te4 heterostructures

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23640%2F19%3A43958577" target="_blank" >RIV/49777513:23640/19:43958577 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/00216224:14310/19:00113420 RIV/00216305:26620/19:PU135039

  • Výsledek na webu

    <a href="https://www.nature.com/articles/s41586-019-1826-7" target="_blank" >https://www.nature.com/articles/s41586-019-1826-7</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1038/s41586-019-1826-7" target="_blank" >10.1038/s41586-019-1826-7</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Large magnetic gap at the Dirac point in Bi2Te3/MnBi2Te4 heterostructures

  • Popis výsledku v původním jazyce

    Magnetically doped topological insulators enable the quantum anomalous Hall efect (QAHE), which provides quantized edge states for lossless charge-transport applications. The edge states are hosted by a magnetic energy gap at the Dirac point, but hitherto all attempts to observe this gap directly have been unsuccessful. Observing the gap is considered to be essential to overcoming the limitations of the QAHE, which so far occurs only at temperatures that are one to two orders of magnitude below the ferromagnetic Curie temperature, TC. Here we use lowtemperature photoelectron spectroscopy to unambiguously reveal the magnetic gap of Mn-doped Bi2Te3, which displays ferromagnetic out-of-plane spin texture and opens up only below TC. Surprisingly, our analysis reveals large gap sizes at 1 kelvin of up to 90 millielectronvolts, which is ive times larger than theoretically predicted. Using multiscale analysis we show that this enhancement is due to a remarkable structure modiication induced by Mn doping: instead of a disordered impurity system, a self-organized alternating sequence of MnBi2Te4 septuple and Bi2Te3 quintuple layers is formed. This enhances the wavefunction overlap and size of the magnetic gap. Mn-doped Bi2Se3 and Mn-doped Sb2Te3 form similar heterostructures, but for Bi2Se3 only a nonmagnetic gap is formed and the magnetization is in the surface plane. This is explained by the smaller spin–orbit interaction by comparison with Mn-doped Bi2Te3. Our indings provide insights that will be crucial in pushing lossless transport in topological insulators towards roomtemperature applications.

  • Název v anglickém jazyce

    Large magnetic gap at the Dirac point in Bi2Te3/MnBi2Te4 heterostructures

  • Popis výsledku anglicky

    Magnetically doped topological insulators enable the quantum anomalous Hall efect (QAHE), which provides quantized edge states for lossless charge-transport applications. The edge states are hosted by a magnetic energy gap at the Dirac point, but hitherto all attempts to observe this gap directly have been unsuccessful. Observing the gap is considered to be essential to overcoming the limitations of the QAHE, which so far occurs only at temperatures that are one to two orders of magnitude below the ferromagnetic Curie temperature, TC. Here we use lowtemperature photoelectron spectroscopy to unambiguously reveal the magnetic gap of Mn-doped Bi2Te3, which displays ferromagnetic out-of-plane spin texture and opens up only below TC. Surprisingly, our analysis reveals large gap sizes at 1 kelvin of up to 90 millielectronvolts, which is ive times larger than theoretically predicted. Using multiscale analysis we show that this enhancement is due to a remarkable structure modiication induced by Mn doping: instead of a disordered impurity system, a self-organized alternating sequence of MnBi2Te4 septuple and Bi2Te3 quintuple layers is formed. This enhances the wavefunction overlap and size of the magnetic gap. Mn-doped Bi2Se3 and Mn-doped Sb2Te3 form similar heterostructures, but for Bi2Se3 only a nonmagnetic gap is formed and the magnetization is in the surface plane. This is explained by the smaller spin–orbit interaction by comparison with Mn-doped Bi2Te3. Our indings provide insights that will be crucial in pushing lossless transport in topological insulators towards roomtemperature applications.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10302 - Condensed matter physics (including formerly solid state physics, supercond.)

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/EF15_003%2F0000358" target="_blank" >EF15_003/0000358: Výpočetní a experimentální design pokročilých materiálů s novými funkcionalitami</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2019

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    NATURE

  • ISSN

    0028-0836

  • e-ISSN

  • Svazek periodika

    576

  • Číslo periodika v rámci svazku

    7787

  • Stát vydavatele periodika

    GB - Spojené království Velké Británie a Severního Irska

  • Počet stran výsledku

    19

  • Strana od-do

    423-428

  • Kód UT WoS článku

    000504660500092

  • EID výsledku v databázi Scopus

    2-s2.0-85076877790