Large magnetic gap at the Dirac point in Bi2Te3/MnBi2Te4 heterostructures
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23640%2F19%3A43958577" target="_blank" >RIV/49777513:23640/19:43958577 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/00216224:14310/19:00113420 RIV/00216305:26620/19:PU135039
Výsledek na webu
<a href="https://www.nature.com/articles/s41586-019-1826-7" target="_blank" >https://www.nature.com/articles/s41586-019-1826-7</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1038/s41586-019-1826-7" target="_blank" >10.1038/s41586-019-1826-7</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Large magnetic gap at the Dirac point in Bi2Te3/MnBi2Te4 heterostructures
Popis výsledku v původním jazyce
Magnetically doped topological insulators enable the quantum anomalous Hall efect (QAHE), which provides quantized edge states for lossless charge-transport applications. The edge states are hosted by a magnetic energy gap at the Dirac point, but hitherto all attempts to observe this gap directly have been unsuccessful. Observing the gap is considered to be essential to overcoming the limitations of the QAHE, which so far occurs only at temperatures that are one to two orders of magnitude below the ferromagnetic Curie temperature, TC. Here we use lowtemperature photoelectron spectroscopy to unambiguously reveal the magnetic gap of Mn-doped Bi2Te3, which displays ferromagnetic out-of-plane spin texture and opens up only below TC. Surprisingly, our analysis reveals large gap sizes at 1 kelvin of up to 90 millielectronvolts, which is ive times larger than theoretically predicted. Using multiscale analysis we show that this enhancement is due to a remarkable structure modiication induced by Mn doping: instead of a disordered impurity system, a self-organized alternating sequence of MnBi2Te4 septuple and Bi2Te3 quintuple layers is formed. This enhances the wavefunction overlap and size of the magnetic gap. Mn-doped Bi2Se3 and Mn-doped Sb2Te3 form similar heterostructures, but for Bi2Se3 only a nonmagnetic gap is formed and the magnetization is in the surface plane. This is explained by the smaller spin–orbit interaction by comparison with Mn-doped Bi2Te3. Our indings provide insights that will be crucial in pushing lossless transport in topological insulators towards roomtemperature applications.
Název v anglickém jazyce
Large magnetic gap at the Dirac point in Bi2Te3/MnBi2Te4 heterostructures
Popis výsledku anglicky
Magnetically doped topological insulators enable the quantum anomalous Hall efect (QAHE), which provides quantized edge states for lossless charge-transport applications. The edge states are hosted by a magnetic energy gap at the Dirac point, but hitherto all attempts to observe this gap directly have been unsuccessful. Observing the gap is considered to be essential to overcoming the limitations of the QAHE, which so far occurs only at temperatures that are one to two orders of magnitude below the ferromagnetic Curie temperature, TC. Here we use lowtemperature photoelectron spectroscopy to unambiguously reveal the magnetic gap of Mn-doped Bi2Te3, which displays ferromagnetic out-of-plane spin texture and opens up only below TC. Surprisingly, our analysis reveals large gap sizes at 1 kelvin of up to 90 millielectronvolts, which is ive times larger than theoretically predicted. Using multiscale analysis we show that this enhancement is due to a remarkable structure modiication induced by Mn doping: instead of a disordered impurity system, a self-organized alternating sequence of MnBi2Te4 septuple and Bi2Te3 quintuple layers is formed. This enhances the wavefunction overlap and size of the magnetic gap. Mn-doped Bi2Se3 and Mn-doped Sb2Te3 form similar heterostructures, but for Bi2Se3 only a nonmagnetic gap is formed and the magnetization is in the surface plane. This is explained by the smaller spin–orbit interaction by comparison with Mn-doped Bi2Te3. Our indings provide insights that will be crucial in pushing lossless transport in topological insulators towards roomtemperature applications.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10302 - Condensed matter physics (including formerly solid state physics, supercond.)
Návaznosti výsledku
Projekt
<a href="/cs/project/EF15_003%2F0000358" target="_blank" >EF15_003/0000358: Výpočetní a experimentální design pokročilých materiálů s novými funkcionalitami</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
NATURE
ISSN
0028-0836
e-ISSN
—
Svazek periodika
576
Číslo periodika v rámci svazku
7787
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
19
Strana od-do
423-428
Kód UT WoS článku
000504660500092
EID výsledku v databázi Scopus
2-s2.0-85076877790