Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Heat accumulation temperature measurement in ultrashort pulse laser micromachining

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23640%2F21%3A43962081" target="_blank" >RIV/49777513:23640/21:43962081 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://doi.org/10.1016/j.ijheatmasstransfer.2020.120866" target="_blank" >https://doi.org/10.1016/j.ijheatmasstransfer.2020.120866</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.ijheatmasstransfer.2020.120866" target="_blank" >10.1016/j.ijheatmasstransfer.2020.120866</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Heat accumulation temperature measurement in ultrashort pulse laser micromachining

  • Popis výsledku v původním jazyce

    Ultrashort pulse laser micromachining is affected by the heat accumulation resulting from the residual heat from previous laser pulses on the sample surface. Up to now, most of the works analysed the accumulation by numerical modelling. The present work focussed on development and application for the first time of a measurement system of heat accumulation temperature directly during the processes in nanosecond and microsecond time ranges. The measurement system was based on the infrared radiometry and contained liquid nitrogen cooled fast HgCdTe photodetector and paraboloid mirrors. Micromachining of grooves was done using a 14 W picosecond laser with different pulse energies, repetition frequencies and scanning speeds. Calibration of the measurement system was done in order to obtain temperatures from the measured signal. The calibration was not straightforward due to very small laser spot (25 μm), small signal and changing of the size of the heated area for low scanning speeds. Obtained heat accumulation temperature ranged from 300°C to 2600°C for scanning speeds from 8 m/s to 0.07 m/s and pulse energies from 0.1 µJ to 100 µJ. According to the scanning electron microscope (SEM) images, the material was already partially melted (small droplets on boarders) for low scanning speeds. Surface roughness and ablation rate were determined by 3D confocal laser microscope. Good correlation was found between the roughness and the heat accumulation temperature, thus confirming the validity of calibration. Measured heat accumulation temperature was surprisingly the highest for the most efficient ablation parameters and at the same time low surface roughness was achieved.

  • Název v anglickém jazyce

    Heat accumulation temperature measurement in ultrashort pulse laser micromachining

  • Popis výsledku anglicky

    Ultrashort pulse laser micromachining is affected by the heat accumulation resulting from the residual heat from previous laser pulses on the sample surface. Up to now, most of the works analysed the accumulation by numerical modelling. The present work focussed on development and application for the first time of a measurement system of heat accumulation temperature directly during the processes in nanosecond and microsecond time ranges. The measurement system was based on the infrared radiometry and contained liquid nitrogen cooled fast HgCdTe photodetector and paraboloid mirrors. Micromachining of grooves was done using a 14 W picosecond laser with different pulse energies, repetition frequencies and scanning speeds. Calibration of the measurement system was done in order to obtain temperatures from the measured signal. The calibration was not straightforward due to very small laser spot (25 μm), small signal and changing of the size of the heated area for low scanning speeds. Obtained heat accumulation temperature ranged from 300°C to 2600°C for scanning speeds from 8 m/s to 0.07 m/s and pulse energies from 0.1 µJ to 100 µJ. According to the scanning electron microscope (SEM) images, the material was already partially melted (small droplets on boarders) for low scanning speeds. Surface roughness and ablation rate were determined by 3D confocal laser microscope. Good correlation was found between the roughness and the heat accumulation temperature, thus confirming the validity of calibration. Measured heat accumulation temperature was surprisingly the highest for the most efficient ablation parameters and at the same time low surface roughness was achieved.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    20506 - Coating and films

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/EF18_069%2F0010018" target="_blank" >EF18_069/0010018: LABIR-PAV / Předaplikační výzkum infračervených technologií</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2021

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER

  • ISSN

    0017-9310

  • e-ISSN

  • Svazek periodika

    168

  • Číslo periodika v rámci svazku

    APR 2021

  • Stát vydavatele periodika

    GB - Spojené království Velké Británie a Severního Irska

  • Počet stran výsledku

    9

  • Strana od-do

  • Kód UT WoS článku

    000640991800025

  • EID výsledku v databázi Scopus

    2-s2.0-85099169592