Spinel Nickel Ferrite Nanoparticles Supported on a 1T/2H Mixed-Phase MoS2 Heterostructured Composite as a Bifunctional Electrocatalyst for Oxygen Evolution and Oxygen Reduction Reactions
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23640%2F22%3A43970452" target="_blank" >RIV/49777513:23640/22:43970452 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1021/acs.energyfuels.2c01191" target="_blank" >https://doi.org/10.1021/acs.energyfuels.2c01191</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1021/acs.energyfuels.2c01191" target="_blank" >10.1021/acs.energyfuels.2c01191</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Spinel Nickel Ferrite Nanoparticles Supported on a 1T/2H Mixed-Phase MoS2 Heterostructured Composite as a Bifunctional Electrocatalyst for Oxygen Evolution and Oxygen Reduction Reactions
Popis výsledku v původním jazyce
A composite electrocatalyst of NiFe2O4 supported on a 2H/1T multiphase MoS2 nanosheet is reported. The as-prepared NiFe2O4/MoS2 heterostructured composite exhibited an excellent bifunctional oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) activity. The composite electrocatalyst exhibited an OER current density of 10 mA cm(-2) with an overpotential of 330 mV in 1 M KOH comparable to that of IrO2. On the other hand, the composite electrocatalyst exhibited an ORR onset potential (E-onset) of 0.82 V vs RHE. The K-L plot and rotating ring-disk electrode analysis evidenced that the ORR on the NiFe2O4/MoS2 heterostructure follows closely the 4 e(-) transfer process similar to Pt/C and delivered notable electrochemical stability after 5000 potential cycles with retention of about 90% diffusion-limiting current density. The H-2-O-2 anion exchange membrane fuel cell (AEMFC) employing the cathode electrode fabricated with the NiFe2O4/MoS2 composite showed a peak power density of similar to 20 mW cm(-2). In contrast, a peak power density of similar to 51 mW cm(-2) was realized for the AEMFC employing the Pt/C cathode electrode under identical operating conditions. Considering the excellent bifunctional activity, good electrochemical performance and stability, and the low-cost facile synthetic approach, the NiFe2O4/MoS2 heterostructured composite developed in this study can be considered as a potential candidate for energy conversion and storage applications.
Název v anglickém jazyce
Spinel Nickel Ferrite Nanoparticles Supported on a 1T/2H Mixed-Phase MoS2 Heterostructured Composite as a Bifunctional Electrocatalyst for Oxygen Evolution and Oxygen Reduction Reactions
Popis výsledku anglicky
A composite electrocatalyst of NiFe2O4 supported on a 2H/1T multiphase MoS2 nanosheet is reported. The as-prepared NiFe2O4/MoS2 heterostructured composite exhibited an excellent bifunctional oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) activity. The composite electrocatalyst exhibited an OER current density of 10 mA cm(-2) with an overpotential of 330 mV in 1 M KOH comparable to that of IrO2. On the other hand, the composite electrocatalyst exhibited an ORR onset potential (E-onset) of 0.82 V vs RHE. The K-L plot and rotating ring-disk electrode analysis evidenced that the ORR on the NiFe2O4/MoS2 heterostructure follows closely the 4 e(-) transfer process similar to Pt/C and delivered notable electrochemical stability after 5000 potential cycles with retention of about 90% diffusion-limiting current density. The H-2-O-2 anion exchange membrane fuel cell (AEMFC) employing the cathode electrode fabricated with the NiFe2O4/MoS2 composite showed a peak power density of similar to 20 mW cm(-2). In contrast, a peak power density of similar to 51 mW cm(-2) was realized for the AEMFC employing the Pt/C cathode electrode under identical operating conditions. Considering the excellent bifunctional activity, good electrochemical performance and stability, and the low-cost facile synthetic approach, the NiFe2O4/MoS2 heterostructured composite developed in this study can be considered as a potential candidate for energy conversion and storage applications.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10405 - Electrochemistry (dry cells, batteries, fuel cells, corrosion metals, electrolysis)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Energy & Fuels
ISSN
0887-0624
e-ISSN
1520-5029
Svazek periodika
36
Číslo periodika v rámci svazku
14
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
13
Strana od-do
7782-7794
Kód UT WoS článku
000823303500001
EID výsledku v databázi Scopus
2-s2.0-85134799714