Turning waste plant fibers into advanced plant fiber reinforced polymer composites: A comprehensive review
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23640%2F23%3A43968951" target="_blank" >RIV/49777513:23640/23:43968951 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S2666682022000962?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S2666682022000962?via%3Dihub</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.jcomc.2022.100333" target="_blank" >10.1016/j.jcomc.2022.100333</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Turning waste plant fibers into advanced plant fiber reinforced polymer composites: A comprehensive review
Popis výsledku v původním jazyce
Plant fibers are increasingly used in fabricating polymer composite components useful in the automotive, construction, and aerospace industries. This surge in the usage of plant fibers in different industries is owing to the improved understanding of the toxicity of synthetic fibers. It is essential to point out that “Humans need earth, not earth needs humans” therefore policymakers and researchers are working on replacing traditional materials with green materials. Plant fibers are green materials with many advantages over synthetic materials, such as easy processing, reduction of CO2 emissions, biodegradable, recyclable, good thermomechanical properties, and better compatibility with human health. Therefore, plant fibers are extensively used as a modifier for polymers. The drawbacks of plant fibers are the presence of OH groups in their basic structure and the presence of amorphous components. Both these drawbacks can be reduced by chemically treating the fibers. Further coupling agents can be used to increase the compatibility between the fiber and polymer. It is reported that incorporating fibers (non-continuous or continuous), and fiber mats as a reinforcement for polymers improve the mechanical, thermal resistance, thermal conductivity, and surface properties. Accelerated aging studies also reported favourable results for the use of plant fiber-based composites for long-term outdoor applications. However, plant fibers have lower strength and are hydrophilic compared to synthetic fibers, more research is required to overcome fully these drawbacks. This review examines and discusses the fundamentals of plant fiber, its processing, drawbacks, recent research trends, composites properties, prospects, and potential applications.
Název v anglickém jazyce
Turning waste plant fibers into advanced plant fiber reinforced polymer composites: A comprehensive review
Popis výsledku anglicky
Plant fibers are increasingly used in fabricating polymer composite components useful in the automotive, construction, and aerospace industries. This surge in the usage of plant fibers in different industries is owing to the improved understanding of the toxicity of synthetic fibers. It is essential to point out that “Humans need earth, not earth needs humans” therefore policymakers and researchers are working on replacing traditional materials with green materials. Plant fibers are green materials with many advantages over synthetic materials, such as easy processing, reduction of CO2 emissions, biodegradable, recyclable, good thermomechanical properties, and better compatibility with human health. Therefore, plant fibers are extensively used as a modifier for polymers. The drawbacks of plant fibers are the presence of OH groups in their basic structure and the presence of amorphous components. Both these drawbacks can be reduced by chemically treating the fibers. Further coupling agents can be used to increase the compatibility between the fiber and polymer. It is reported that incorporating fibers (non-continuous or continuous), and fiber mats as a reinforcement for polymers improve the mechanical, thermal resistance, thermal conductivity, and surface properties. Accelerated aging studies also reported favourable results for the use of plant fiber-based composites for long-term outdoor applications. However, plant fibers have lower strength and are hydrophilic compared to synthetic fibers, more research is required to overcome fully these drawbacks. This review examines and discusses the fundamentals of plant fiber, its processing, drawbacks, recent research trends, composites properties, prospects, and potential applications.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20505 - Composites (including laminates, reinforced plastics, cermets, combined natural and synthetic fibre fabrics; filled composites)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Composites Part C: Open Access
ISSN
2666-6820
e-ISSN
2666-6820
Svazek periodika
10
Číslo periodika v rámci svazku
MAR 2023
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
15
Strana od-do
—
Kód UT WoS článku
000915727400001
EID výsledku v databázi Scopus
2-s2.0-85144890250