Mathematical modeling of electric and hydraulic resistances of reconstructed carbon felt electrodes using micro-computed tomography
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23640%2F23%3A43968960" target="_blank" >RIV/49777513:23640/23:43968960 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/60461373:22340/23:43926201
Výsledek na webu
<a href="https://doi.org/10.1016/j.cej.2023.141424" target="_blank" >https://doi.org/10.1016/j.cej.2023.141424</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.cej.2023.141424" target="_blank" >10.1016/j.cej.2023.141424</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Mathematical modeling of electric and hydraulic resistances of reconstructed carbon felt electrodes using micro-computed tomography
Popis výsledku v původním jazyce
Redox flow batteries of various chemistries are potential electrochemical energy storages for residential accumulation and grid stabilization. Decoupled power and capacity represent the main advantages of the technology. The key component of the battery, the carbon felt electrode, does not participate in the electrochemical reaction directly, but it provides active sites for the electrochemical reaction of electroactive ions. In addition, the electrode contributes to the battery stack polarization through the charge transfer, ohmic and mass transport resistances and increases the hydraulic resistance of the battery stack and resulting pumping losses associated with the electrolyte circulation. In this contribution, a mathematical model was developed to evaluate geometrical parameters and simulate the effective electric conductivity and hydraulic resistance of two commercially available carbon felt electrodes using their microtomography images. These were preprocessed and binarized into a reconstructed computation domain. Geometric descriptors, such as porosity, specific surface area and fiber spatial orientation, were calculated using in-house developed algorithms. The area specific resistance and hydraulic resistance were then estimated and validated against our own experimental data, which were measured for both felts under six different relative compressions. The results of the fiber spatial orientation showed a change in the orientation of the carbon felt fiber with increasing compression rate. As the result of increasing compression, the electrical resistance decreases, whereas the hydraulic resistance increases. Interestingly, due to a change in spatial fiber orientation, Carman-Kozeny constant is also decreasing with increasing compression. The developed model can be further used to optimize the textural properties of 3D fibrous electrodes from hydraulic and ohmic point of view, within the development of flow electrochemical reactors
Název v anglickém jazyce
Mathematical modeling of electric and hydraulic resistances of reconstructed carbon felt electrodes using micro-computed tomography
Popis výsledku anglicky
Redox flow batteries of various chemistries are potential electrochemical energy storages for residential accumulation and grid stabilization. Decoupled power and capacity represent the main advantages of the technology. The key component of the battery, the carbon felt electrode, does not participate in the electrochemical reaction directly, but it provides active sites for the electrochemical reaction of electroactive ions. In addition, the electrode contributes to the battery stack polarization through the charge transfer, ohmic and mass transport resistances and increases the hydraulic resistance of the battery stack and resulting pumping losses associated with the electrolyte circulation. In this contribution, a mathematical model was developed to evaluate geometrical parameters and simulate the effective electric conductivity and hydraulic resistance of two commercially available carbon felt electrodes using their microtomography images. These were preprocessed and binarized into a reconstructed computation domain. Geometric descriptors, such as porosity, specific surface area and fiber spatial orientation, were calculated using in-house developed algorithms. The area specific resistance and hydraulic resistance were then estimated and validated against our own experimental data, which were measured for both felts under six different relative compressions. The results of the fiber spatial orientation showed a change in the orientation of the carbon felt fiber with increasing compression rate. As the result of increasing compression, the electrical resistance decreases, whereas the hydraulic resistance increases. Interestingly, due to a change in spatial fiber orientation, Carman-Kozeny constant is also decreasing with increasing compression. The developed model can be further used to optimize the textural properties of 3D fibrous electrodes from hydraulic and ohmic point of view, within the development of flow electrochemical reactors
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10405 - Electrochemistry (dry cells, batteries, fuel cells, corrosion metals, electrolysis)
Návaznosti výsledku
Projekt
<a href="/cs/project/TK02030001" target="_blank" >TK02030001: Vývoj pokročilých průtočných elektrochemických úložišť energie</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Chemical Engineering Journal
ISSN
1385-8947
e-ISSN
1873-3212
Svazek periodika
458
Číslo periodika v rámci svazku
FEB 15 2023
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
9
Strana od-do
—
Kód UT WoS článku
000963215600001
EID výsledku v databázi Scopus
2-s2.0-85150800625