Dynamics of lattice disorder in perovskite materials, polarization nanoclusters and ferroelectric domain wall structures
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23640%2F23%3A43969057" target="_blank" >RIV/49777513:23640/23:43969057 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1038/s41524-023-01069-6" target="_blank" >https://doi.org/10.1038/s41524-023-01069-6</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1038/s41524-023-01069-6" target="_blank" >10.1038/s41524-023-01069-6</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Dynamics of lattice disorder in perovskite materials, polarization nanoclusters and ferroelectric domain wall structures
Popis výsledku v původním jazyce
The nexus between classic ferroelectricity and the structure of perovskite materials hinges on the concept of lattice disorder. Although the ordered perovskites display short-range displacements of the central cations around their equilibrium points, the lattice disorder dynamically unfolds to generate a myriad of distorted rhombohedral lattices characterized by the hopping of the central cations across <111> directions. It is discovered that the lattice disorder correlates with the emergence of minimum configuration energy <100> pathways for the central cations, resulting in spatially modulated ultrafast polarization nanocluster arrangements that are stabilized by the electric charge defects in the material. Through high-resolution phonon dispersion analyses encompassing molecular dynamics (MD) and density functional theory (DFT) simulations, we provide unequivocal evidence linking the hopping of central cations to the development of diffuse soft phonon modes observed throughout the phase transitions of the perovskite. Through massive MD simulations, we unveil the impact of lattice disorder on the structures of domain walls at finite-temperature vis-à-vis collective activation and deactivation of <100> pathways. Furthermore, our simulations demonstrate the development of hierarchical morphotropic phase boundary (MPB) nanostructures under the combined influence of externally applied pressure and stress relaxation, characterized by sudden emergence of zig-zagged monoclinic arrangements that involve dual <111> shifts of the central cations. These findings have implications for tailoring MPBs in thin-film structures and for the light-induced mobilization of DWs. Avenues are finally uncovered to the exploration of lattice disorder through gradual shear strain application.
Název v anglickém jazyce
Dynamics of lattice disorder in perovskite materials, polarization nanoclusters and ferroelectric domain wall structures
Popis výsledku anglicky
The nexus between classic ferroelectricity and the structure of perovskite materials hinges on the concept of lattice disorder. Although the ordered perovskites display short-range displacements of the central cations around their equilibrium points, the lattice disorder dynamically unfolds to generate a myriad of distorted rhombohedral lattices characterized by the hopping of the central cations across <111> directions. It is discovered that the lattice disorder correlates with the emergence of minimum configuration energy <100> pathways for the central cations, resulting in spatially modulated ultrafast polarization nanocluster arrangements that are stabilized by the electric charge defects in the material. Through high-resolution phonon dispersion analyses encompassing molecular dynamics (MD) and density functional theory (DFT) simulations, we provide unequivocal evidence linking the hopping of central cations to the development of diffuse soft phonon modes observed throughout the phase transitions of the perovskite. Through massive MD simulations, we unveil the impact of lattice disorder on the structures of domain walls at finite-temperature vis-à-vis collective activation and deactivation of <100> pathways. Furthermore, our simulations demonstrate the development of hierarchical morphotropic phase boundary (MPB) nanostructures under the combined influence of externally applied pressure and stress relaxation, characterized by sudden emergence of zig-zagged monoclinic arrangements that involve dual <111> shifts of the central cations. These findings have implications for tailoring MPBs in thin-film structures and for the light-induced mobilization of DWs. Avenues are finally uncovered to the exploration of lattice disorder through gradual shear strain application.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20504 - Ceramics
Návaznosti výsledku
Projekt
<a href="/cs/project/EF15_003%2F0000358" target="_blank" >EF15_003/0000358: Výpočetní a experimentální design pokročilých materiálů s novými funkcionalitami</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
NPJ COMPUTATIONAL MATERIALS
ISSN
2057-3960
e-ISSN
2057-3960
Svazek periodika
9
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
13
Strana od-do
—
Kód UT WoS článku
001018801000001
EID výsledku v databázi Scopus
2-s2.0-85163851599