Injury Assessment in Non-Standard Seating Configurations in Highly Automated Vehicles Using Digital Twin and Active Learning
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23640%2F23%3A43969059" target="_blank" >RIV/49777513:23640/23:43969059 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.4271/2023-01-0006" target="_blank" >https://doi.org/10.4271/2023-01-0006</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.4271/2023-01-0006" target="_blank" >10.4271/2023-01-0006</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Injury Assessment in Non-Standard Seating Configurations in Highly Automated Vehicles Using Digital Twin and Active Learning
Popis výsledku v původním jazyce
Human-driven vehicles are going to be replaced by highly automated vehicles as one of the future mobility trends. Even though highly automated vehicles’ active safety systems can protect against vehicle-to-vehicle accidents, the traffic mix between human-driven vehicles and highly automated vehicles is still a potential source of vehicle collisions. Additionally, occupants in highly automated vehicles will be passengers not necessarily dealing with driving anymore, so there will be a considerable number of non-standard seating configurations. Those configurations are not able to be assessed for safety by hardware testing due to their number, variability and complexity. The objective of the paper is the development of a fast virtual approach to identify the passengers’ injury risk in non-standard seating configurations under multi-directional impact scenarios and severity. We deploy the concept of surrogate modeling, where we introduce a digital twin for the expected automated vehicle interiors. Non-standard seating configurations are represented by a simplified model of four seats located in the vehicle. These seats are occupied by a previously developed scalable human body model representing passengers of variable anthropometry. Thanks to the vehicle interior simplification and the hybrid human body model, thousands of simulations describing the impacts identified can be run. Based on the numerical simulations describing impact scenarios, a fast and lean artificial intelligence model actively learns a digital twin to approximate injury risk predictions for a huge number of possible crash scenarios fast.
Název v anglickém jazyce
Injury Assessment in Non-Standard Seating Configurations in Highly Automated Vehicles Using Digital Twin and Active Learning
Popis výsledku anglicky
Human-driven vehicles are going to be replaced by highly automated vehicles as one of the future mobility trends. Even though highly automated vehicles’ active safety systems can protect against vehicle-to-vehicle accidents, the traffic mix between human-driven vehicles and highly automated vehicles is still a potential source of vehicle collisions. Additionally, occupants in highly automated vehicles will be passengers not necessarily dealing with driving anymore, so there will be a considerable number of non-standard seating configurations. Those configurations are not able to be assessed for safety by hardware testing due to their number, variability and complexity. The objective of the paper is the development of a fast virtual approach to identify the passengers’ injury risk in non-standard seating configurations under multi-directional impact scenarios and severity. We deploy the concept of surrogate modeling, where we introduce a digital twin for the expected automated vehicle interiors. Non-standard seating configurations are represented by a simplified model of four seats located in the vehicle. These seats are occupied by a previously developed scalable human body model representing passengers of variable anthropometry. Thanks to the vehicle interior simplification and the hybrid human body model, thousands of simulations describing the impacts identified can be run. Based on the numerical simulations describing impact scenarios, a fast and lean artificial intelligence model actively learns a digital twin to approximate injury risk predictions for a huge number of possible crash scenarios fast.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
20302 - Applied mechanics
Návaznosti výsledku
Projekt
<a href="/cs/project/EF17_048%2F0007280" target="_blank" >EF17_048/0007280: Aplikace moderních technologií v medicíně a průmyslu</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
World Congress Experience, WCX 2023
ISBN
—
ISSN
0148-7191
e-ISSN
2688-3627
Počet stran výsledku
9
Strana od-do
—
Název nakladatele
SAE Technical Papers
Místo vydání
Detroit
Místo konání akce
Detroit
Datum konání akce
18. 4. 2023
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—