Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Injury Assessment in Non-Standard Seating Configurations in Highly Automated Vehicles Using Digital Twin and Active Learning

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23640%2F23%3A43969059" target="_blank" >RIV/49777513:23640/23:43969059 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://doi.org/10.4271/2023-01-0006" target="_blank" >https://doi.org/10.4271/2023-01-0006</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.4271/2023-01-0006" target="_blank" >10.4271/2023-01-0006</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Injury Assessment in Non-Standard Seating Configurations in Highly Automated Vehicles Using Digital Twin and Active Learning

  • Popis výsledku v původním jazyce

    Human-driven vehicles are going to be replaced by highly automated vehicles as one of the future mobility trends. Even though highly automated vehicles’ active safety systems can protect against vehicle-to-vehicle accidents, the traffic mix between human-driven vehicles and highly automated vehicles is still a potential source of vehicle collisions. Additionally, occupants in highly automated vehicles will be passengers not necessarily dealing with driving anymore, so there will be a considerable number of non-standard seating configurations. Those configurations are not able to be assessed for safety by hardware testing due to their number, variability and complexity. The objective of the paper is the development of a fast virtual approach to identify the passengers’ injury risk in non-standard seating configurations under multi-directional impact scenarios and severity. We deploy the concept of surrogate modeling, where we introduce a digital twin for the expected automated vehicle interiors. Non-standard seating configurations are represented by a simplified model of four seats located in the vehicle. These seats are occupied by a previously developed scalable human body model representing passengers of variable anthropometry. Thanks to the vehicle interior simplification and the hybrid human body model, thousands of simulations describing the impacts identified can be run. Based on the numerical simulations describing impact scenarios, a fast and lean artificial intelligence model actively learns a digital twin to approximate injury risk predictions for a huge number of possible crash scenarios fast.

  • Název v anglickém jazyce

    Injury Assessment in Non-Standard Seating Configurations in Highly Automated Vehicles Using Digital Twin and Active Learning

  • Popis výsledku anglicky

    Human-driven vehicles are going to be replaced by highly automated vehicles as one of the future mobility trends. Even though highly automated vehicles’ active safety systems can protect against vehicle-to-vehicle accidents, the traffic mix between human-driven vehicles and highly automated vehicles is still a potential source of vehicle collisions. Additionally, occupants in highly automated vehicles will be passengers not necessarily dealing with driving anymore, so there will be a considerable number of non-standard seating configurations. Those configurations are not able to be assessed for safety by hardware testing due to their number, variability and complexity. The objective of the paper is the development of a fast virtual approach to identify the passengers’ injury risk in non-standard seating configurations under multi-directional impact scenarios and severity. We deploy the concept of surrogate modeling, where we introduce a digital twin for the expected automated vehicle interiors. Non-standard seating configurations are represented by a simplified model of four seats located in the vehicle. These seats are occupied by a previously developed scalable human body model representing passengers of variable anthropometry. Thanks to the vehicle interior simplification and the hybrid human body model, thousands of simulations describing the impacts identified can be run. Based on the numerical simulations describing impact scenarios, a fast and lean artificial intelligence model actively learns a digital twin to approximate injury risk predictions for a huge number of possible crash scenarios fast.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    20302 - Applied mechanics

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/EF17_048%2F0007280" target="_blank" >EF17_048/0007280: Aplikace moderních technologií v medicíně a průmyslu</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2023

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    World Congress Experience, WCX 2023

  • ISBN

  • ISSN

    0148-7191

  • e-ISSN

    2688-3627

  • Počet stran výsledku

    9

  • Strana od-do

  • Název nakladatele

    SAE Technical Papers

  • Místo vydání

    Detroit

  • Místo konání akce

    Detroit

  • Datum konání akce

    18. 4. 2023

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku