Dielectric properties of nano-MMT and graphene quantum dots embedded poly (vinylidene fluoride-cohexafluoropropylene) nanocomposite films
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23640%2F23%3A43969628" target="_blank" >RIV/49777513:23640/23:43969628 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1002/app.53724" target="_blank" >https://doi.org/10.1002/app.53724</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1002/app.53724" target="_blank" >10.1002/app.53724</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Dielectric properties of nano-MMT and graphene quantum dots embedded poly (vinylidene fluoride-cohexafluoropropylene) nanocomposite films
Popis výsledku v původním jazyce
In this work, montmorillonite (MMT) nanoclay and graphene quantum dots (GQDs) embedded poly (vinylidenefluoride-co-hexafluoropropylene) (PVDF-HFP) nanocomposite films were prepared using the solution-casting technique and characterized using Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), Scanning electron microscopy (SEM) and Atomic force microscopy (AFM). The thermal, mechanical and dielectric properties of PVDF-HFP/MMT/GQDs nanocomposite films were also investigated. The dielectric constant (e ' ), dielectric loss (e '' ) and conductivity (sigma) of synthesized nanocomposite films were evaluated in the frequency and temperature range f100 Hz-1 MHz and 30-150 C, respectively. The highest e ' with relatively high e '' was achieved at low frequency for increasing temperature for all the nanocomposite films. The conductivity results showed good increment from lower to higher frequency up to 100 kHz at increasing temperature. The Cole-Cole plots represent the complex impedance of PVDF-HFP/MMT/GQDs nanocomposites at 150 C. The attained results imply that the PVDF-HFP/MMT/GQDs nanocomposite films can be useful candidates for flexible electronic devices.
Název v anglickém jazyce
Dielectric properties of nano-MMT and graphene quantum dots embedded poly (vinylidene fluoride-cohexafluoropropylene) nanocomposite films
Popis výsledku anglicky
In this work, montmorillonite (MMT) nanoclay and graphene quantum dots (GQDs) embedded poly (vinylidenefluoride-co-hexafluoropropylene) (PVDF-HFP) nanocomposite films were prepared using the solution-casting technique and characterized using Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), Scanning electron microscopy (SEM) and Atomic force microscopy (AFM). The thermal, mechanical and dielectric properties of PVDF-HFP/MMT/GQDs nanocomposite films were also investigated. The dielectric constant (e ' ), dielectric loss (e '' ) and conductivity (sigma) of synthesized nanocomposite films were evaluated in the frequency and temperature range f100 Hz-1 MHz and 30-150 C, respectively. The highest e ' with relatively high e '' was achieved at low frequency for increasing temperature for all the nanocomposite films. The conductivity results showed good increment from lower to higher frequency up to 100 kHz at increasing temperature. The Cole-Cole plots represent the complex impedance of PVDF-HFP/MMT/GQDs nanocomposites at 150 C. The attained results imply that the PVDF-HFP/MMT/GQDs nanocomposite films can be useful candidates for flexible electronic devices.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10404 - Polymer science
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
JOURNAL OF APPLIED POLYMER SCIENCE
ISSN
0021-8995
e-ISSN
1097-4628
Svazek periodika
140
Číslo periodika v rámci svazku
15
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
15
Strana od-do
—
Kód UT WoS článku
000929886800001
EID výsledku v databázi Scopus
2-s2.0-85147508786