A comparative study of RuO2 and Ru reveals the role of oxygen vacancies in electrocatalytic nitrogen reduction to ammonia under ambient conditions
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23640%2F23%3A43972902" target="_blank" >RIV/49777513:23640/23:43972902 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1016/j.apcata.2023.119375" target="_blank" >https://doi.org/10.1016/j.apcata.2023.119375</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.apcata.2023.119375" target="_blank" >10.1016/j.apcata.2023.119375</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
A comparative study of RuO2 and Ru reveals the role of oxygen vacancies in electrocatalytic nitrogen reduction to ammonia under ambient conditions
Popis výsledku v původním jazyce
Nitrogen molecule reduction to ammonia requires adsorption and hydrogenation sites. In this study, the nitrogen reduction reaction (NRR) activity of RuO2 and metallic Ru catalysts was studied to explore the role of oxides and metallic dual active sites. Ruthenium oxide nanoparticles displayed an ammonia production rate of 16.5 & mu;g h-1 cm- 2 with a Faradaic efficiency (FE) of 0.26% at - 0.15 V vs. RHE in N2-saturated 0.1 M KOH which is 58% higher compared to Ru black (6.8 & mu;g h-1 cm- 2 with 0.19% FE at -0.15 Vvs.RHE). This is attributed to the formation of oxygen vacancies (Vo) on the RuO2 surface during cathodic potential polarization, which provides a facile adsorption site for N2 in addition to the Ru4+ active site while the proton supplied via hydrogen spillover from the metal hydride site to the adsorbed Vo-N2 site. This assumption was validated by detailed XPS, XRD, and N2 TPD analysis.Nitrogen molecule reduction to ammonia requires adsorption and hydrogenation sites. In this study, the nitrogen reduction reaction (NRR) activity of RuO2 and metallic Ru catalysts was studied to explore the role of oxides and metallic dual active sites. Ruthenium oxide nanoparticles displayed an ammonia production rate of 16.5 & mu;g h-1 cm- 2 with a Faradaic efficiency (FE) of 0.26% at - 0.15 V vs. RHE in N2-saturated 0.1 M KOH which is 58% higher compared to Ru black (6.8 & mu;g h-1 cm- 2 with 0.19% FE at -0.15 Vvs.RHE). This is attributed to the formation of oxygen vacancies (Vo) on the RuO2 surface during cathodic potential polarization, which provides a facile adsorption site for N2 in addition to the Ru4+ active site while the proton supplied via hydrogen spillover from the metal hydride site to the adsorbed Vo-N2 site. This assumption was validated by detailed XPS, XRD, and N2 TPD analysis.
Název v anglickém jazyce
A comparative study of RuO2 and Ru reveals the role of oxygen vacancies in electrocatalytic nitrogen reduction to ammonia under ambient conditions
Popis výsledku anglicky
Nitrogen molecule reduction to ammonia requires adsorption and hydrogenation sites. In this study, the nitrogen reduction reaction (NRR) activity of RuO2 and metallic Ru catalysts was studied to explore the role of oxides and metallic dual active sites. Ruthenium oxide nanoparticles displayed an ammonia production rate of 16.5 & mu;g h-1 cm- 2 with a Faradaic efficiency (FE) of 0.26% at - 0.15 V vs. RHE in N2-saturated 0.1 M KOH which is 58% higher compared to Ru black (6.8 & mu;g h-1 cm- 2 with 0.19% FE at -0.15 Vvs.RHE). This is attributed to the formation of oxygen vacancies (Vo) on the RuO2 surface during cathodic potential polarization, which provides a facile adsorption site for N2 in addition to the Ru4+ active site while the proton supplied via hydrogen spillover from the metal hydride site to the adsorbed Vo-N2 site. This assumption was validated by detailed XPS, XRD, and N2 TPD analysis.Nitrogen molecule reduction to ammonia requires adsorption and hydrogenation sites. In this study, the nitrogen reduction reaction (NRR) activity of RuO2 and metallic Ru catalysts was studied to explore the role of oxides and metallic dual active sites. Ruthenium oxide nanoparticles displayed an ammonia production rate of 16.5 & mu;g h-1 cm- 2 with a Faradaic efficiency (FE) of 0.26% at - 0.15 V vs. RHE in N2-saturated 0.1 M KOH which is 58% higher compared to Ru black (6.8 & mu;g h-1 cm- 2 with 0.19% FE at -0.15 Vvs.RHE). This is attributed to the formation of oxygen vacancies (Vo) on the RuO2 surface during cathodic potential polarization, which provides a facile adsorption site for N2 in addition to the Ru4+ active site while the proton supplied via hydrogen spillover from the metal hydride site to the adsorbed Vo-N2 site. This assumption was validated by detailed XPS, XRD, and N2 TPD analysis.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10405 - Electrochemistry (dry cells, batteries, fuel cells, corrosion metals, electrolysis)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
APPLIED CATALYSIS A-GENERAL
ISSN
0926-860X
e-ISSN
1873-3875
Svazek periodika
665
Číslo periodika v rámci svazku
SEP 5 2023
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
10
Strana od-do
—
Kód UT WoS článku
001068500900001
EID výsledku v databázi Scopus
2-s2.0-85168081468