Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

A comparative study of RuO2 and Ru reveals the role of oxygen vacancies in electrocatalytic nitrogen reduction to ammonia under ambient conditions

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23640%2F23%3A43972902" target="_blank" >RIV/49777513:23640/23:43972902 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://doi.org/10.1016/j.apcata.2023.119375" target="_blank" >https://doi.org/10.1016/j.apcata.2023.119375</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.apcata.2023.119375" target="_blank" >10.1016/j.apcata.2023.119375</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    A comparative study of RuO2 and Ru reveals the role of oxygen vacancies in electrocatalytic nitrogen reduction to ammonia under ambient conditions

  • Popis výsledku v původním jazyce

    Nitrogen molecule reduction to ammonia requires adsorption and hydrogenation sites. In this study, the nitrogen reduction reaction (NRR) activity of RuO2 and metallic Ru catalysts was studied to explore the role of oxides and metallic dual active sites. Ruthenium oxide nanoparticles displayed an ammonia production rate of 16.5 &amp; mu;g h-1 cm- 2 with a Faradaic efficiency (FE) of 0.26% at - 0.15 V vs. RHE in N2-saturated 0.1 M KOH which is 58% higher compared to Ru black (6.8 &amp; mu;g h-1 cm- 2 with 0.19% FE at -0.15 Vvs.RHE). This is attributed to the formation of oxygen vacancies (Vo) on the RuO2 surface during cathodic potential polarization, which provides a facile adsorption site for N2 in addition to the Ru4+ active site while the proton supplied via hydrogen spillover from the metal hydride site to the adsorbed Vo-N2 site. This assumption was validated by detailed XPS, XRD, and N2 TPD analysis.Nitrogen molecule reduction to ammonia requires adsorption and hydrogenation sites. In this study, the nitrogen reduction reaction (NRR) activity of RuO2 and metallic Ru catalysts was studied to explore the role of oxides and metallic dual active sites. Ruthenium oxide nanoparticles displayed an ammonia production rate of 16.5 &amp; mu;g h-1 cm- 2 with a Faradaic efficiency (FE) of 0.26% at - 0.15 V vs. RHE in N2-saturated 0.1 M KOH which is 58% higher compared to Ru black (6.8 &amp; mu;g h-1 cm- 2 with 0.19% FE at -0.15 Vvs.RHE). This is attributed to the formation of oxygen vacancies (Vo) on the RuO2 surface during cathodic potential polarization, which provides a facile adsorption site for N2 in addition to the Ru4+ active site while the proton supplied via hydrogen spillover from the metal hydride site to the adsorbed Vo-N2 site. This assumption was validated by detailed XPS, XRD, and N2 TPD analysis.

  • Název v anglickém jazyce

    A comparative study of RuO2 and Ru reveals the role of oxygen vacancies in electrocatalytic nitrogen reduction to ammonia under ambient conditions

  • Popis výsledku anglicky

    Nitrogen molecule reduction to ammonia requires adsorption and hydrogenation sites. In this study, the nitrogen reduction reaction (NRR) activity of RuO2 and metallic Ru catalysts was studied to explore the role of oxides and metallic dual active sites. Ruthenium oxide nanoparticles displayed an ammonia production rate of 16.5 &amp; mu;g h-1 cm- 2 with a Faradaic efficiency (FE) of 0.26% at - 0.15 V vs. RHE in N2-saturated 0.1 M KOH which is 58% higher compared to Ru black (6.8 &amp; mu;g h-1 cm- 2 with 0.19% FE at -0.15 Vvs.RHE). This is attributed to the formation of oxygen vacancies (Vo) on the RuO2 surface during cathodic potential polarization, which provides a facile adsorption site for N2 in addition to the Ru4+ active site while the proton supplied via hydrogen spillover from the metal hydride site to the adsorbed Vo-N2 site. This assumption was validated by detailed XPS, XRD, and N2 TPD analysis.Nitrogen molecule reduction to ammonia requires adsorption and hydrogenation sites. In this study, the nitrogen reduction reaction (NRR) activity of RuO2 and metallic Ru catalysts was studied to explore the role of oxides and metallic dual active sites. Ruthenium oxide nanoparticles displayed an ammonia production rate of 16.5 &amp; mu;g h-1 cm- 2 with a Faradaic efficiency (FE) of 0.26% at - 0.15 V vs. RHE in N2-saturated 0.1 M KOH which is 58% higher compared to Ru black (6.8 &amp; mu;g h-1 cm- 2 with 0.19% FE at -0.15 Vvs.RHE). This is attributed to the formation of oxygen vacancies (Vo) on the RuO2 surface during cathodic potential polarization, which provides a facile adsorption site for N2 in addition to the Ru4+ active site while the proton supplied via hydrogen spillover from the metal hydride site to the adsorbed Vo-N2 site. This assumption was validated by detailed XPS, XRD, and N2 TPD analysis.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10405 - Electrochemistry (dry cells, batteries, fuel cells, corrosion metals, electrolysis)

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2023

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    APPLIED CATALYSIS A-GENERAL

  • ISSN

    0926-860X

  • e-ISSN

    1873-3875

  • Svazek periodika

    665

  • Číslo periodika v rámci svazku

    SEP 5 2023

  • Stát vydavatele periodika

    NL - Nizozemsko

  • Počet stran výsledku

    10

  • Strana od-do

  • Kód UT WoS článku

    001068500900001

  • EID výsledku v databázi Scopus

    2-s2.0-85168081468