A versatile non-precious metal based electrode material endowed by layer-on-layer structure for methanol oxidation and supercapacitor applications
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23640%2F24%3A43972103" target="_blank" >RIV/49777513:23640/24:43972103 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1016/j.est.2024.110867" target="_blank" >https://doi.org/10.1016/j.est.2024.110867</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.est.2024.110867" target="_blank" >10.1016/j.est.2024.110867</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
A versatile non-precious metal based electrode material endowed by layer-on-layer structure for methanol oxidation and supercapacitor applications
Popis výsledku v původním jazyce
A high-performance non -noble metal -based electrode is the need of the hour to resolve the challenge of huge energy demand. Energy conversion and storage devices are the two ways to tackle this challenge. In this context, porous and non -noble metal -based electrodes NiCo2O4 (NCO), NiCo2O4/NiO (CNO) and NiCo2O4/NiO/rGO (CNOG) are developed as a bifunctional electrode for supercapacitor and methanol fuel cell applications. The binary composite of NiCo2O4 with NiO increases the redox sites and enhances its electrochemical activity. The low conductivity and problem of aggregation of transition metal oxides are overcome by developing a hybrid nanocomposite of NiCo2O4/NiO with reduced graphene oxide (rGO). The layer -on -layer morphology of CNOG, and the interfacial interactions among NiCo2O4 nanoflakes, NiO nanoparticles and rGO nanosheets increase the specific surface area of the hybrid, which leads to enhanced ion penetration into the active sites. CNOG acts as a potential anode catalyst for methanol oxidation with excellent structural stability. It exhibits a high methanol oxidation current density with low onset potential and faster kinetics. Symmetric supercapacitor CNOG//CNOG delivers specific capacitance of 59.4989 F/g, energy and power density of 6.69 Wh/kg and 698 W/kg respectively at 3 M KOH aqueous electrolyte. The solid-state symmetric supercapacitor (SSSC) using PVA/KOH electrolyte allows broader potential window, thereby outperforming the aqueous electrolyte. The SSSC exhibits specific capacitance of 88.8 F/g, energy and power density 20.84 Wh/kg and 1003 W/kg respectively at the same current density.
Název v anglickém jazyce
A versatile non-precious metal based electrode material endowed by layer-on-layer structure for methanol oxidation and supercapacitor applications
Popis výsledku anglicky
A high-performance non -noble metal -based electrode is the need of the hour to resolve the challenge of huge energy demand. Energy conversion and storage devices are the two ways to tackle this challenge. In this context, porous and non -noble metal -based electrodes NiCo2O4 (NCO), NiCo2O4/NiO (CNO) and NiCo2O4/NiO/rGO (CNOG) are developed as a bifunctional electrode for supercapacitor and methanol fuel cell applications. The binary composite of NiCo2O4 with NiO increases the redox sites and enhances its electrochemical activity. The low conductivity and problem of aggregation of transition metal oxides are overcome by developing a hybrid nanocomposite of NiCo2O4/NiO with reduced graphene oxide (rGO). The layer -on -layer morphology of CNOG, and the interfacial interactions among NiCo2O4 nanoflakes, NiO nanoparticles and rGO nanosheets increase the specific surface area of the hybrid, which leads to enhanced ion penetration into the active sites. CNOG acts as a potential anode catalyst for methanol oxidation with excellent structural stability. It exhibits a high methanol oxidation current density with low onset potential and faster kinetics. Symmetric supercapacitor CNOG//CNOG delivers specific capacitance of 59.4989 F/g, energy and power density of 6.69 Wh/kg and 698 W/kg respectively at 3 M KOH aqueous electrolyte. The solid-state symmetric supercapacitor (SSSC) using PVA/KOH electrolyte allows broader potential window, thereby outperforming the aqueous electrolyte. The SSSC exhibits specific capacitance of 88.8 F/g, energy and power density 20.84 Wh/kg and 1003 W/kg respectively at the same current density.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
21001 - Nano-materials (production and properties)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Energy Storage
ISSN
2352-152X
e-ISSN
2352-1538
Svazek periodika
84
Číslo periodika v rámci svazku
APR 15 2024
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
14
Strana od-do
—
Kód UT WoS článku
001185292700001
EID výsledku v databázi Scopus
2-s2.0-85185202078