Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Engineering multifunctional dynamic hydrogel for biomedical and tissue regenerative applications

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23640%2F24%3A43972153" target="_blank" >RIV/49777513:23640/24:43972153 - isvavai.cz</a>

  • Výsledek na webu

    <a href="http://hdl.handle.net/11025/57980" target="_blank" >http://hdl.handle.net/11025/57980</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.cej.2024.150403" target="_blank" >10.1016/j.cej.2024.150403</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Engineering multifunctional dynamic hydrogel for biomedical and tissue regenerative applications

  • Popis výsledku v původním jazyce

    Hydrogels have emerged in various biomedical applications, including tissue engineering and medical devices, due to their ability to imitate the natural extracellular matrix (ECM) of tissues. However, conventional static hydrogels lack the ability to dynamically respond to changes in their surroundings to withstand the robust changes of the biophysical microenvironment and to trigger on-demand functionality such as drug release and mechanical change. In contrast, multifunctional dynamic hydrogels can adapt and respond to external stimuli and have drawn great attention in recent studies. It is realized that the integration of nanomaterials into dynamic hydrogels provides numerous functionalities for a great variety of biomedical applications that cannot be achieved by conventional hydrogels. This review article provides a comprehensive overview of recent advances in designing and fabricating dynamic hydrogels for biomedical applications. We describe different types of dynamic hydrogels based on breakable and reversible covalent bonds as well as noncovalent interactions. These mechanisms are described in detail as a useful reference for designing crosslinking strategies that strongly influence the mechanical properties of the hydrogels. We also discuss the use of dynamic hydrogels and their potential benefits. This review further explores different biomedical applications of dynamic nanocomposite hydrogels, including their use in drug delivery, tissue engineering, bioadhesives, wound healing, cancer treatment, and mechanistic study, as well as multiple-scale biomedical applications. Finally, we discuss the challenges and future perspectives of dynamic hydrogels in the field of biomedical engineering, including the integration of diverse technologies.

  • Název v anglickém jazyce

    Engineering multifunctional dynamic hydrogel for biomedical and tissue regenerative applications

  • Popis výsledku anglicky

    Hydrogels have emerged in various biomedical applications, including tissue engineering and medical devices, due to their ability to imitate the natural extracellular matrix (ECM) of tissues. However, conventional static hydrogels lack the ability to dynamically respond to changes in their surroundings to withstand the robust changes of the biophysical microenvironment and to trigger on-demand functionality such as drug release and mechanical change. In contrast, multifunctional dynamic hydrogels can adapt and respond to external stimuli and have drawn great attention in recent studies. It is realized that the integration of nanomaterials into dynamic hydrogels provides numerous functionalities for a great variety of biomedical applications that cannot be achieved by conventional hydrogels. This review article provides a comprehensive overview of recent advances in designing and fabricating dynamic hydrogels for biomedical applications. We describe different types of dynamic hydrogels based on breakable and reversible covalent bonds as well as noncovalent interactions. These mechanisms are described in detail as a useful reference for designing crosslinking strategies that strongly influence the mechanical properties of the hydrogels. We also discuss the use of dynamic hydrogels and their potential benefits. This review further explores different biomedical applications of dynamic nanocomposite hydrogels, including their use in drug delivery, tissue engineering, bioadhesives, wound healing, cancer treatment, and mechanistic study, as well as multiple-scale biomedical applications. Finally, we discuss the challenges and future perspectives of dynamic hydrogels in the field of biomedical engineering, including the integration of diverse technologies.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10404 - Polymer science

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/EH22_008%2F0004634" target="_blank" >EH22_008/0004634: Strojní inženýrství biologických a bioinspirovaných systémů</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Chemical Engineering Journal

  • ISSN

    1385-8947

  • e-ISSN

    1873-3212

  • Svazek periodika

    487

  • Číslo periodika v rámci svazku

    MAY 1 2024

  • Stát vydavatele periodika

    CH - Švýcarská konfederace

  • Počet stran výsledku

    38

  • Strana od-do

  • Kód UT WoS článku

    001223394200001

  • EID výsledku v databázi Scopus

    2-s2.0-85188678874