Recent progress in MXene-based materials for lithium-ion and lithium-sulphur batteries: A comprehensive review
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23640%2F24%3A43973077" target="_blank" >RIV/49777513:23640/24:43973077 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1016/j.est.2024.112017" target="_blank" >https://doi.org/10.1016/j.est.2024.112017</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.est.2024.112017" target="_blank" >10.1016/j.est.2024.112017</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Recent progress in MXene-based materials for lithium-ion and lithium-sulphur batteries: A comprehensive review
Popis výsledku v původním jazyce
Two-dimensional (2D) nanomaterials, particularly MXenes, are hailed for their potential in energy storage applications due to their high surface area, exceptional mechanical strength, higher electrical conductivity, outstanding magnetic, thermal, and physicochemical properties along with magnificent optical and plasmonic characteristics. Even MXenes show formidable qualities such as layer-structured architecture and remarkable hydrophilicity which make them highly suitable for use in Lithium-ion batteries (LIBs) anodes and Lithium-Sulphur batteries (LSBs) cathodes. However, MXenes often face restacking issues during cycling, limiting their Li+ storage capacity. To address this, strategies such as widening interfacial width, modifying functional groups, and synthesizing few-layered MXenes have been proposed. Composite materials incorporating MXenes aim to regulate restacking and improve electrical contact loss of high-capacity anode materials like Silicon (Si), metal oxides (MOs), and transition metal dichalcogenides (TMDs) in LIBs. Additionally, modest MXene concentrations enhance the performance of LIBs and address conductivity issues in LSBs caused by Sulphur breakdown and Lithium polysulfides (LiPSs) shuttle. Broadly, MXenes have the prospects to tackle the major hurdles facing cutting-edge energy storage technologies. Keeping in view, the above features of MXenes, the first section of this article reviews different synthesis approaches of MXenes and their extraordinary properties. The second section elucidates the developments of MXenes and MXene-premised anode materials for LIBs and cathode materials for LSBs. In the last portion, the critical challenges of MXene-focused materials for LIBs and LSBs and numerous decisive future perspectives are highlighted and concisely discussed.
Název v anglickém jazyce
Recent progress in MXene-based materials for lithium-ion and lithium-sulphur batteries: A comprehensive review
Popis výsledku anglicky
Two-dimensional (2D) nanomaterials, particularly MXenes, are hailed for their potential in energy storage applications due to their high surface area, exceptional mechanical strength, higher electrical conductivity, outstanding magnetic, thermal, and physicochemical properties along with magnificent optical and plasmonic characteristics. Even MXenes show formidable qualities such as layer-structured architecture and remarkable hydrophilicity which make them highly suitable for use in Lithium-ion batteries (LIBs) anodes and Lithium-Sulphur batteries (LSBs) cathodes. However, MXenes often face restacking issues during cycling, limiting their Li+ storage capacity. To address this, strategies such as widening interfacial width, modifying functional groups, and synthesizing few-layered MXenes have been proposed. Composite materials incorporating MXenes aim to regulate restacking and improve electrical contact loss of high-capacity anode materials like Silicon (Si), metal oxides (MOs), and transition metal dichalcogenides (TMDs) in LIBs. Additionally, modest MXene concentrations enhance the performance of LIBs and address conductivity issues in LSBs caused by Sulphur breakdown and Lithium polysulfides (LiPSs) shuttle. Broadly, MXenes have the prospects to tackle the major hurdles facing cutting-edge energy storage technologies. Keeping in view, the above features of MXenes, the first section of this article reviews different synthesis approaches of MXenes and their extraordinary properties. The second section elucidates the developments of MXenes and MXene-premised anode materials for LIBs and cathode materials for LSBs. In the last portion, the critical challenges of MXene-focused materials for LIBs and LSBs and numerous decisive future perspectives are highlighted and concisely discussed.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20704 - Energy and fuels
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Energy Storage
ISSN
2352-152X
e-ISSN
2352-1538
Svazek periodika
92
Číslo periodika v rámci svazku
JUL 1 2024
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
46
Strana od-do
—
Kód UT WoS článku
001247503500001
EID výsledku v databázi Scopus
2-s2.0-85194291812