Hyperspectral imaging coupled with multivariate analysis and artificial intelligence to the classification of maize kernels
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60076658%3A12220%2F22%3A43904499" target="_blank" >RIV/60076658:12220/22:43904499 - isvavai.cz</a>
Výsledek na webu
<a href="http://www.international-agrophysics.org/Hyperspectral-imaging-coupled-with-multivariate-analysis-and-artificial-intelligence,147227,0,2.html" target="_blank" >http://www.international-agrophysics.org/Hyperspectral-imaging-coupled-with-multivariate-analysis-and-artificial-intelligence,147227,0,2.html</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.31545/intagr/147227" target="_blank" >10.31545/intagr/147227</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Hyperspectral imaging coupled with multivariate analysis and artificial intelligence to the classification of maize kernels
Popis výsledku v původním jazyce
Maize (Zea mays) is one of the key crops in the world, taking third place after wheat and rice in terms of cultivated area. This study aimed to demonstrate the potential of non-destructive hyperspectral imaging in the wavelength range of 400-1000 nm to discriminate between and classify maize kernels in three cultivars by using non-destructive hyperspectral imaging in the wavelength range of 400-1000 nm. Three cultivars of maize kernels were exposed to hyperspectral imaging with 20 replications. Predictor variables included 28 intensities of reflection wave for spectral imaging and 4 variables in terms of the weight, length, width, and thickness of a single kernel. The classification was successfully performed through Linear Discriminant Analysis and Artificial Neural Network methods, taking into account 32, 15, and 5 predictor variables. According to the results, Linear Discriminant Analysis with 32 predictor variables is characterized by a high degree of accuracy (95%). The most important predictor variables included the reflection wave intensity of the third peak, the wavelength intensity of 490 nm, the wavelength intensity of 580 nm, and the weight and thickness of a single kernel.
Název v anglickém jazyce
Hyperspectral imaging coupled with multivariate analysis and artificial intelligence to the classification of maize kernels
Popis výsledku anglicky
Maize (Zea mays) is one of the key crops in the world, taking third place after wheat and rice in terms of cultivated area. This study aimed to demonstrate the potential of non-destructive hyperspectral imaging in the wavelength range of 400-1000 nm to discriminate between and classify maize kernels in three cultivars by using non-destructive hyperspectral imaging in the wavelength range of 400-1000 nm. Three cultivars of maize kernels were exposed to hyperspectral imaging with 20 replications. Predictor variables included 28 intensities of reflection wave for spectral imaging and 4 variables in terms of the weight, length, width, and thickness of a single kernel. The classification was successfully performed through Linear Discriminant Analysis and Artificial Neural Network methods, taking into account 32, 15, and 5 predictor variables. According to the results, Linear Discriminant Analysis with 32 predictor variables is characterized by a high degree of accuracy (95%). The most important predictor variables included the reflection wave intensity of the third peak, the wavelength intensity of 490 nm, the wavelength intensity of 580 nm, and the weight and thickness of a single kernel.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
40101 - Agriculture
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
International Agrophysics
ISSN
0236-8722
e-ISSN
2300-8725
Svazek periodika
36
Číslo periodika v rámci svazku
2
Stát vydavatele periodika
PL - Polská republika
Počet stran výsledku
9
Strana od-do
"83–91"
Kód UT WoS článku
000784765200001
EID výsledku v databázi Scopus
—