Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Electron transfer between carotenoid and chlorophyll contributes to quenching in the LHCSRI. protein from Physcomitrella patens

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60076658%3A12310%2F16%3A43890795" target="_blank" >RIV/60076658:12310/16:43890795 - isvavai.cz</a>

  • Výsledek na webu

    <a href="http://www.sciencedirect.com/science/article/pii/S0005272816306107" target="_blank" >http://www.sciencedirect.com/science/article/pii/S0005272816306107</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.bbabio.2016.09.001" target="_blank" >10.1016/j.bbabio.2016.09.001</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Electron transfer between carotenoid and chlorophyll contributes to quenching in the LHCSRI. protein from Physcomitrella patens

  • Popis výsledku v původním jazyce

    Plants harvest photons for photosynthesis using light-harvesting complexes (LHCs)-an array of chlorophyll proteins that can reversibly switch from harvesting to energy-dissipation mode to prevent over-excitation and damage of the photosynthetic apparatus. In unicellular algae and lower plants this process requires the LHCSR proteins which senses over-acidification of the lumen trough protonatable residues exposed to the thylakoid lumen to activate quenching reactions. Further activation is provided by replacement of the violaxanthin ligand with its de-epoxidized product, zeaxanthin, also induced by excess light. We have produced the ppLHCSR1 protein from Physcomitrella patens by over-expression in tobacco and purified it in either its violaxanthin- or the zeaxanthin-binding form with the aim of analyzing their spectroscopic properties at either neutral or acidic pH. Using femtosecond spectroscopy, we demonstrated that the energy dissipation is achieved by two distinct quenching mechanism which are both activated by low pH. The first is present in both ppLHCSR1-Vio and ppLHCSR1-Zea and is characterized by 30-40 ps time constant. The spectrum of the quenching product is reminiscent of a carotenoid radical cation, suggesting that the pH-induced quenching mechanism is likely electron transfer from the carotenoid to the excited Chl a. In addition, a second quenching channel populating the S-1 state of carotenoid via energy transfer from Chl is found exclusively in the ppLHCSR1-Zea at pH 5. These results provide proof of principle that more than one quenching mechanism may operate in the LHC superfamily and also help understanding the photoprotective role of LHCSR proteins and the evolution of LHC antennae.

  • Název v anglickém jazyce

    Electron transfer between carotenoid and chlorophyll contributes to quenching in the LHCSRI. protein from Physcomitrella patens

  • Popis výsledku anglicky

    Plants harvest photons for photosynthesis using light-harvesting complexes (LHCs)-an array of chlorophyll proteins that can reversibly switch from harvesting to energy-dissipation mode to prevent over-excitation and damage of the photosynthetic apparatus. In unicellular algae and lower plants this process requires the LHCSR proteins which senses over-acidification of the lumen trough protonatable residues exposed to the thylakoid lumen to activate quenching reactions. Further activation is provided by replacement of the violaxanthin ligand with its de-epoxidized product, zeaxanthin, also induced by excess light. We have produced the ppLHCSR1 protein from Physcomitrella patens by over-expression in tobacco and purified it in either its violaxanthin- or the zeaxanthin-binding form with the aim of analyzing their spectroscopic properties at either neutral or acidic pH. Using femtosecond spectroscopy, we demonstrated that the energy dissipation is achieved by two distinct quenching mechanism which are both activated by low pH. The first is present in both ppLHCSR1-Vio and ppLHCSR1-Zea and is characterized by 30-40 ps time constant. The spectrum of the quenching product is reminiscent of a carotenoid radical cation, suggesting that the pH-induced quenching mechanism is likely electron transfer from the carotenoid to the excited Chl a. In addition, a second quenching channel populating the S-1 state of carotenoid via energy transfer from Chl is found exclusively in the ppLHCSR1-Zea at pH 5. These results provide proof of principle that more than one quenching mechanism may operate in the LHC superfamily and also help understanding the photoprotective role of LHCSR proteins and the evolution of LHC antennae.

Klasifikace

  • Druh

    J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)

  • CEP obor

    BO - Biofyzika

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GBP501%2F12%2FG055" target="_blank" >GBP501/12/G055: Centrum fotosyntetického výzkumu</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2016

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Biochimica et Biophysica Acta - Bioenergetics

  • ISSN

    0005-2728

  • e-ISSN

  • Svazek periodika

    1857

  • Číslo periodika v rámci svazku

    12

  • Stát vydavatele periodika

    NL - Nizozemsko

  • Počet stran výsledku

    9

  • Strana od-do

    1870-1878

  • Kód UT WoS článku

    000387632100005

  • EID výsledku v databázi Scopus