Error identities for variational problems with obstacles
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60076658%3A12310%2F18%3A43897558" target="_blank" >RIV/60076658:12310/18:43897558 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/67985556:_____/18:00483574
Výsledek na webu
<a href="https://onlinelibrary.wiley.com/doi/epdf/10.1002/zamm.201700105" target="_blank" >https://onlinelibrary.wiley.com/doi/epdf/10.1002/zamm.201700105</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1002/zamm.201700105" target="_blank" >10.1002/zamm.201700105</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Error identities for variational problems with obstacles
Popis výsledku v původním jazyce
The paper is devoted to analysis of a class of nonlinear free boundary problems that are usually solved by variational methods based on primal, dual or primal-dual variational settings. We deduce and investigate special relations (error identities). They show that a certain nonlinear measure of the distance to the exact solution (specific for each problem) is equivalent to the respective duality gap, whose minimization is the keystone of all variational numerical methods. Therefore, the identity actually sets the measure that contains maximal quantitative information on the quality of a numerical solution available through these methods. The measure has quadratic terms generated by the linear part of the differential operator and nonlinear terms associated with the free boundary. We obtain fully computable two sided bounds of this measure and show that they provide efficient estimates of the distance between the minimizer and any function (approximation) from the corresponding energy space. Several computational examples show that for different minimization sequences the balance between the quadratic and the nonlinear terms of the overall error measure may be different and essential contribution of nonlinear terms may serve as an indicator that the free boundaries are approximated very roughly.
Název v anglickém jazyce
Error identities for variational problems with obstacles
Popis výsledku anglicky
The paper is devoted to analysis of a class of nonlinear free boundary problems that are usually solved by variational methods based on primal, dual or primal-dual variational settings. We deduce and investigate special relations (error identities). They show that a certain nonlinear measure of the distance to the exact solution (specific for each problem) is equivalent to the respective duality gap, whose minimization is the keystone of all variational numerical methods. Therefore, the identity actually sets the measure that contains maximal quantitative information on the quality of a numerical solution available through these methods. The measure has quadratic terms generated by the linear part of the differential operator and nonlinear terms associated with the free boundary. We obtain fully computable two sided bounds of this measure and show that they provide efficient estimates of the distance between the minimizer and any function (approximation) from the corresponding energy space. Several computational examples show that for different minimization sequences the balance between the quadratic and the nonlinear terms of the overall error measure may be different and essential contribution of nonlinear terms may serve as an indicator that the free boundaries are approximated very roughly.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
ZAMM-Zeitschrift fur Angewandte Mathematik und Mechanik
ISSN
0044-2267
e-ISSN
—
Svazek periodika
98
Číslo periodika v rámci svazku
4
Stát vydavatele periodika
DE - Spolková republika Německo
Počet stran výsledku
24
Strana od-do
635-658
Kód UT WoS článku
000430013600010
EID výsledku v databázi Scopus
2-s2.0-85041107421