Asymptotic stability of delayed consumer age-structured population models with an Allee effect
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60076658%3A12310%2F18%3A43897649" target="_blank" >RIV/60076658:12310/18:43897649 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/60077344:_____/18:00496118
Výsledek na webu
<a href="https://reader.elsevier.com/reader/sd/pii/S0025556418301044?token=8615B6822ED2F35AC3A7E01518BA4BAF361C39CEFFFFE175800658837CDF90E233DED995336672A09071FD42D26972BB" target="_blank" >https://reader.elsevier.com/reader/sd/pii/S0025556418301044?token=8615B6822ED2F35AC3A7E01518BA4BAF361C39CEFFFFE175800658837CDF90E233DED995336672A09071FD42D26972BB</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.mbs.2018.10.001" target="_blank" >10.1016/j.mbs.2018.10.001</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Asymptotic stability of delayed consumer age-structured population models with an Allee effect
Popis výsledku v původním jazyce
In this article we study a nonlinear age-structured consumer population model with density-dependent death and fertility rates, and time delays that model incubation/gestation period. Density dependence we consider combines both positive effects at low population numbers (i.e., the Allee effect) and negative effects at high population numbers due to infra-specific competition of consumers. The positive density-dependence is either due to an increase in the birth rate, or due to a decrease in the mortality rate at low population numbers. We prove that similarly to unstructured models, the Allee effect leads to model multi-stability where, besides the locally stable extinction equilibrium, there are up to two positive equilibria. Calculating derivatives of the basic reproduction number at the equilibria we prove that the upper of the two non-trivial equilibria (when it exists) is locally asymptotically stable independently of the time delay. The smaller of the two equilibria is always unstable. Using numerical simulations we analyze topologically nonequivalent phase portraits of the model.
Název v anglickém jazyce
Asymptotic stability of delayed consumer age-structured population models with an Allee effect
Popis výsledku anglicky
In this article we study a nonlinear age-structured consumer population model with density-dependent death and fertility rates, and time delays that model incubation/gestation period. Density dependence we consider combines both positive effects at low population numbers (i.e., the Allee effect) and negative effects at high population numbers due to infra-specific competition of consumers. The positive density-dependence is either due to an increase in the birth rate, or due to a decrease in the mortality rate at low population numbers. We prove that similarly to unstructured models, the Allee effect leads to model multi-stability where, besides the locally stable extinction equilibrium, there are up to two positive equilibria. Calculating derivatives of the basic reproduction number at the equilibria we prove that the upper of the two non-trivial equilibria (when it exists) is locally asymptotically stable independently of the time delay. The smaller of the two equilibria is always unstable. Using numerical simulations we analyze topologically nonequivalent phase portraits of the model.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10602 - Biology (theoretical, mathematical, thermal, cryobiology, biological rhythm), Evolutionary biology
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Mathematical Biosciences
ISSN
0025-5564
e-ISSN
—
Svazek periodika
306
Číslo periodika v rámci svazku
DEC 2018
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
10
Strana od-do
170-179
Kód UT WoS článku
000453496200017
EID výsledku v databázi Scopus
2-s2.0-85054598285