Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

A novel method to predict dark diversity using unconstrained ordination analysis

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60076658%3A12310%2F19%3A43899372" target="_blank" >RIV/60076658:12310/19:43899372 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/60077344:_____/19:00505019 RIV/67985939:_____/19:00505019

  • Výsledek na webu

    <a href="https://onlinelibrary.wiley.com/doi/epdf/10.1111/jvs.12757" target="_blank" >https://onlinelibrary.wiley.com/doi/epdf/10.1111/jvs.12757</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1111/jvs.12757" target="_blank" >10.1111/jvs.12757</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    A novel method to predict dark diversity using unconstrained ordination analysis

  • Popis výsledku v původním jazyce

    Questions Species pools are the product of complex ecological and evolutionary mechanisms, operating over a range of spatial scales. Here, we focus on species absent from local sites but with the potential to establish within communities - known as dark diversity. Methods for estimating dark diversity are still being developed and need to be compared, as well as tested for the type, and amount, of reference data needed to calibrate these methods. Location South Bohemia (48 degrees 58 &apos; N, 14 degrees 28 &apos; E) and Zelezne Hory (49 degrees 52 &apos; N, 15 degrees 34 &apos; E), Czech Republic. Method We compared a widely accepted algorithm to estimate species pools (Beals smoothing index, based on species co-occurrence) against a novel method based on an unconstrained ordination (UNO). Following previous work, we used spatially nested sampling for target plots, with the dark diversity estimates computed from smaller plots validated against additional species present in larger plots, and a reference dataset (Czech National Phytosociological Database of &gt;30,000 plots as global reference data). We determined which method provides the best estimate of dark diversity with an index termed the &quot;Success Rate Index&quot;. Results When using the whole reference dataset (national scale), both UNO and Beals provided comparable predictions of dark diversity that were better than null expectations based on species frequency. However, when predicting from regionally restricted spatial scales, UNO performed significantly better than Beals. UNO also tended to detect less common species better than Beals. The success rate of combining UNO and Beals slightly outperformed the results obtained from the single methods, but only with the largest reference dataset. Conclusions The UNO method provides a consistently reliable estimate of dark diversity, particularly when the reference dataset is size-limited. For future calculations, we urge caution regarding the choice of dark diversity methods with respect to the reference data available, and how different methods handle species of high, and low, occurrence frequency.

  • Název v anglickém jazyce

    A novel method to predict dark diversity using unconstrained ordination analysis

  • Popis výsledku anglicky

    Questions Species pools are the product of complex ecological and evolutionary mechanisms, operating over a range of spatial scales. Here, we focus on species absent from local sites but with the potential to establish within communities - known as dark diversity. Methods for estimating dark diversity are still being developed and need to be compared, as well as tested for the type, and amount, of reference data needed to calibrate these methods. Location South Bohemia (48 degrees 58 &apos; N, 14 degrees 28 &apos; E) and Zelezne Hory (49 degrees 52 &apos; N, 15 degrees 34 &apos; E), Czech Republic. Method We compared a widely accepted algorithm to estimate species pools (Beals smoothing index, based on species co-occurrence) against a novel method based on an unconstrained ordination (UNO). Following previous work, we used spatially nested sampling for target plots, with the dark diversity estimates computed from smaller plots validated against additional species present in larger plots, and a reference dataset (Czech National Phytosociological Database of &gt;30,000 plots as global reference data). We determined which method provides the best estimate of dark diversity with an index termed the &quot;Success Rate Index&quot;. Results When using the whole reference dataset (national scale), both UNO and Beals provided comparable predictions of dark diversity that were better than null expectations based on species frequency. However, when predicting from regionally restricted spatial scales, UNO performed significantly better than Beals. UNO also tended to detect less common species better than Beals. The success rate of combining UNO and Beals slightly outperformed the results obtained from the single methods, but only with the largest reference dataset. Conclusions The UNO method provides a consistently reliable estimate of dark diversity, particularly when the reference dataset is size-limited. For future calculations, we urge caution regarding the choice of dark diversity methods with respect to the reference data available, and how different methods handle species of high, and low, occurrence frequency.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10611 - Plant sciences, botany

Návaznosti výsledku

  • Projekt

    Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2019

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Journal of Vegetation Science

  • ISSN

    1100-9233

  • e-ISSN

  • Svazek periodika

    30

  • Číslo periodika v rámci svazku

    4

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    10

  • Strana od-do

    610-619

  • Kód UT WoS článku

    000474629200003

  • EID výsledku v databázi Scopus

    2-s2.0-85066915048