Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Oxalic Acid Adsorption on Rutile: Experiments and Surface Complexation Modeling to 150 °C

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60076658%3A12310%2F19%3A43899383" target="_blank" >RIV/60076658:12310/19:43899383 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://pubs.acs.org/doi/pdf/10.1021/acs.langmuir.8b03982" target="_blank" >https://pubs.acs.org/doi/pdf/10.1021/acs.langmuir.8b03982</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1021/acs.langmuir.8b03982" target="_blank" >10.1021/acs.langmuir.8b03982</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Oxalic Acid Adsorption on Rutile: Experiments and Surface Complexation Modeling to 150 °C

  • Popis výsledku v původním jazyce

    Here, we characterize oxalate adsorption by rutile in Oxalate adsorption on rutile NaCl media (0.03 and 0.30 m) and between pH 3 and 10 over a wide temperature range which includes the near hydrothermal regime (10-150 degrees C). Oxalate adsorption increases with decreasing pH (as is typical for anion binding by metal oxides), but systematic trends with respect to ionic strength or temperature are absent. Surface complexation modeling (SCM) following the CD-MUSIC formalism, and as constrained by molecular modeling simulations and IR spectroscopic results from the literature, is used to interpret the adsorption data. The molecular modeling simulations, which include molecular dynamics simulations supported by free-energy and ab initio calculations, reveal that oxalate binding is outer- sphere, albeit via strong hydrogen bonds. Conversely, previous IR spectroscopic results conclude that various types of inner-sphere complexes often predominate. SCMs constrained by both the molecular modeling results and the IR spectroscopic data were developed, and both fit the adsorption data equally well. We conjecture that the discrepancy between the molecular simulation and IR spectroscopic results is due to the nature of the rutile surfaces investigated, that is, the perfect (110) crystal faces for the molecular simulations and various rutile powders for the IR spectroscopy studies. Although the (110) surface plane is most often dominant for rutile powders, a variety of steps, kinks, and other types of surface defects are also invariably present. Hence, we speculate that surface defect sites may be primarily responsible for inner-sphere oxalate adsorption, although further study is necessary to prove or disprove this hypothesis.

  • Název v anglickém jazyce

    Oxalic Acid Adsorption on Rutile: Experiments and Surface Complexation Modeling to 150 °C

  • Popis výsledku anglicky

    Here, we characterize oxalate adsorption by rutile in Oxalate adsorption on rutile NaCl media (0.03 and 0.30 m) and between pH 3 and 10 over a wide temperature range which includes the near hydrothermal regime (10-150 degrees C). Oxalate adsorption increases with decreasing pH (as is typical for anion binding by metal oxides), but systematic trends with respect to ionic strength or temperature are absent. Surface complexation modeling (SCM) following the CD-MUSIC formalism, and as constrained by molecular modeling simulations and IR spectroscopic results from the literature, is used to interpret the adsorption data. The molecular modeling simulations, which include molecular dynamics simulations supported by free-energy and ab initio calculations, reveal that oxalate binding is outer- sphere, albeit via strong hydrogen bonds. Conversely, previous IR spectroscopic results conclude that various types of inner-sphere complexes often predominate. SCMs constrained by both the molecular modeling results and the IR spectroscopic data were developed, and both fit the adsorption data equally well. We conjecture that the discrepancy between the molecular simulation and IR spectroscopic results is due to the nature of the rutile surfaces investigated, that is, the perfect (110) crystal faces for the molecular simulations and various rutile powders for the IR spectroscopy studies. Although the (110) surface plane is most often dominant for rutile powders, a variety of steps, kinks, and other types of surface defects are also invariably present. Hence, we speculate that surface defect sites may be primarily responsible for inner-sphere oxalate adsorption, although further study is necessary to prove or disprove this hypothesis.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10403 - Physical chemistry

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/LTAUSA17163" target="_blank" >LTAUSA17163: Molekulární simulace procesů na rozhraní pevná látka - kapalina</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2019

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Langmuir

  • ISSN

    0743-7463

  • e-ISSN

  • Svazek periodika

    35

  • Číslo periodika v rámci svazku

    24

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    10

  • Strana od-do

    7631-7640

  • Kód UT WoS článku

    000472682600004

  • EID výsledku v databázi Scopus

    2-s2.0-85064180908