Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Occam's Razor for Big Data? On Detecting Quality in Large Unstructured Datasets

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60076658%3A12310%2F19%3A43900048" target="_blank" >RIV/60076658:12310/19:43900048 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.mdpi.com/2076-3417/9/15/3065/htm" target="_blank" >https://www.mdpi.com/2076-3417/9/15/3065/htm</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.3390/app9153065" target="_blank" >10.3390/app9153065</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Occam's Razor for Big Data? On Detecting Quality in Large Unstructured Datasets

  • Popis výsledku v původním jazyce

    Detecting quality in large unstructured datasets requires capacities far beyond the limits of human perception and communicability and, as a result, there is an emerging trend towards increasingly complex analytic solutions in data science to cope with this problem. This new trend towards analytic complexity represents a severe challenge for the principle of parsimony (Occam&apos;s razor) in science. This review article combines insight from various domains such as physics, computational science, data engineering, and cognitive science to review the specific properties of big data. Problems for detecting data quality without losing the principle of parsimony are then highlighted on the basis of specific examples. Computational building block approaches for data clustering can help to deal with large unstructured datasets in minimized computation time, and meaning can be extracted rapidly from large sets of unstructured image or video data parsimoniously through relatively simple unsupervised machine learning algorithms. Why we still massively lack in expertise for exploiting big data wisely to extract relevant information for specific tasks, recognize patterns and generate new information, or simply store and further process large amounts of sensor data is then reviewed, and examples illustrating why we need subjective views and pragmatic methods to analyze big data contents are brought forward. The review concludes on how cultural differences between East and West are likely to affect the course of big data analytics, and the development of increasingly autonomous artificial intelligence (AI) aimed at coping with the big data deluge in the near future.

  • Název v anglickém jazyce

    Occam's Razor for Big Data? On Detecting Quality in Large Unstructured Datasets

  • Popis výsledku anglicky

    Detecting quality in large unstructured datasets requires capacities far beyond the limits of human perception and communicability and, as a result, there is an emerging trend towards increasingly complex analytic solutions in data science to cope with this problem. This new trend towards analytic complexity represents a severe challenge for the principle of parsimony (Occam&apos;s razor) in science. This review article combines insight from various domains such as physics, computational science, data engineering, and cognitive science to review the specific properties of big data. Problems for detecting data quality without losing the principle of parsimony are then highlighted on the basis of specific examples. Computational building block approaches for data clustering can help to deal with large unstructured datasets in minimized computation time, and meaning can be extracted rapidly from large sets of unstructured image or video data parsimoniously through relatively simple unsupervised machine learning algorithms. Why we still massively lack in expertise for exploiting big data wisely to extract relevant information for specific tasks, recognize patterns and generate new information, or simply store and further process large amounts of sensor data is then reviewed, and examples illustrating why we need subjective views and pragmatic methods to analyze big data contents are brought forward. The review concludes on how cultural differences between East and West are likely to affect the course of big data analytics, and the development of increasingly autonomous artificial intelligence (AI) aimed at coping with the big data deluge in the near future.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10102 - Applied mathematics

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2019

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Applied Sciences-Basel

  • ISSN

    2076-3417

  • e-ISSN

  • Svazek periodika

    9

  • Číslo periodika v rámci svazku

    15

  • Stát vydavatele periodika

    CH - Švýcarská konfederace

  • Počet stran výsledku

    27

  • Strana od-do

  • Kód UT WoS článku

    000482134500120

  • EID výsledku v databázi Scopus