Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Evidence of functional species sorting by rainfall and biotic interactions: A community monolith experimental approach

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60076658%3A12310%2F19%3A43900301" target="_blank" >RIV/60076658:12310/19:43900301 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://besjournals.onlinelibrary.wiley.com/doi/epdf/10.1111/1365-2745.13210" target="_blank" >https://besjournals.onlinelibrary.wiley.com/doi/epdf/10.1111/1365-2745.13210</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1111/1365-2745.13210" target="_blank" >10.1111/1365-2745.13210</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Evidence of functional species sorting by rainfall and biotic interactions: A community monolith experimental approach

  • Popis výsledku v původním jazyce

    Understanding the mechanisms that underlie species assembly is a central concern in community ecology. Abiotic and biotic filters are probabilistic &apos;sieves&apos; that allow species with certain functional traits to become a part of the community, or not. We manipulated natural plant assemblies in order to identify variations in the timings of biotic and abiotic filters that determine community trait assemblies. We extracted soil portions when the investigated annual plant community was in its seed phase (&apos;community monolith&apos;), thereby maintaining the structure and similar soil characteristics to the field conditions. Community monoliths were subjected to experimental manipulation in terms of the rainfall timing and amount, and perturbations of the biological soil crust (BSC; intact vs. perturbed). We surveyed the experimental community assembly over time based on the functional diversity by considering important functional traits in different life stages. We found that autumn droughts acted as abiotic filters by favouring the germination and establishment of species with greater investment in the root biomass. Under severe droughts (66% water reduction), the experimental assemblies were dominated by species with functional traits adapted to water shortage conditions: high leaf dry matter content, low specific leaf area, small individual size, low reproductive ratio and high root:shoot ratio. We identified two roles of BSCs in annual plant species assemblies: (a) as a biotic filter that limited the establishment of species based on seed size, and (b) as a buffer against water stress conditions by reducing soil evapotranspiration. Synthesis. We demonstrated the importance of the timing and amount of rainfall for shaping annual plant communities, and identified germination filters as the main process that determined community assemblies. Our results suggest that the phenotypic integration of functional traits facilitates resistance to drought during the life cycle. The BSC-annual plant relationship shifted from negative, by acting as a germination filter, to positive, by acting as a buffer in later stages. Climatic fluctuations and fine scale biotic determinants of spatial heterogeneity emerged as sources of changes in the community assembly in time and space to possibly promote species coexistence and trait differences among the communities studied.

  • Název v anglickém jazyce

    Evidence of functional species sorting by rainfall and biotic interactions: A community monolith experimental approach

  • Popis výsledku anglicky

    Understanding the mechanisms that underlie species assembly is a central concern in community ecology. Abiotic and biotic filters are probabilistic &apos;sieves&apos; that allow species with certain functional traits to become a part of the community, or not. We manipulated natural plant assemblies in order to identify variations in the timings of biotic and abiotic filters that determine community trait assemblies. We extracted soil portions when the investigated annual plant community was in its seed phase (&apos;community monolith&apos;), thereby maintaining the structure and similar soil characteristics to the field conditions. Community monoliths were subjected to experimental manipulation in terms of the rainfall timing and amount, and perturbations of the biological soil crust (BSC; intact vs. perturbed). We surveyed the experimental community assembly over time based on the functional diversity by considering important functional traits in different life stages. We found that autumn droughts acted as abiotic filters by favouring the germination and establishment of species with greater investment in the root biomass. Under severe droughts (66% water reduction), the experimental assemblies were dominated by species with functional traits adapted to water shortage conditions: high leaf dry matter content, low specific leaf area, small individual size, low reproductive ratio and high root:shoot ratio. We identified two roles of BSCs in annual plant species assemblies: (a) as a biotic filter that limited the establishment of species based on seed size, and (b) as a buffer against water stress conditions by reducing soil evapotranspiration. Synthesis. We demonstrated the importance of the timing and amount of rainfall for shaping annual plant communities, and identified germination filters as the main process that determined community assemblies. Our results suggest that the phenotypic integration of functional traits facilitates resistance to drought during the life cycle. The BSC-annual plant relationship shifted from negative, by acting as a germination filter, to positive, by acting as a buffer in later stages. Climatic fluctuations and fine scale biotic determinants of spatial heterogeneity emerged as sources of changes in the community assembly in time and space to possibly promote species coexistence and trait differences among the communities studied.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10618 - Ecology

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2019

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Journal of Ecology

  • ISSN

    0022-0477

  • e-ISSN

  • Svazek periodika

    107

  • Číslo periodika v rámci svazku

    6

  • Stát vydavatele periodika

    GB - Spojené království Velké Británie a Severního Irska

  • Počet stran výsledku

    17

  • Strana od-do

    2772-2788

  • Kód UT WoS článku

    000491025800022

  • EID výsledku v databázi Scopus

    2-s2.0-85067379815