Quantifying microbial growth and carbon use efficiency in dry soil environments via(18)O water vapor equilibration
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60076658%3A12310%2F20%3A43901115" target="_blank" >RIV/60076658:12310/20:43901115 - isvavai.cz</a>
Výsledek na webu
<a href="https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/gcb.15168" target="_blank" >https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/gcb.15168</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1111/gcb.15168" target="_blank" >10.1111/gcb.15168</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Quantifying microbial growth and carbon use efficiency in dry soil environments via(18)O water vapor equilibration
Popis výsledku v původním jazyce
Soil microbial physiology controls large fluxes of C to the atmosphere, thus, improving our ability to accurately quantify microbial physiology in soil is essential. However, current methods to determine microbial C metabolism require liquid water addition, which makes it practically impossible to measure microbial physiology in dry soil samples without stimulating microbial growth and respiration (namely, the "Birch effect"). We developed a new method based on in vivo(18)O-water vapor equilibration to minimize soil rewetting effects. This method allows the isotopic labeling of soil water without direct liquid water addition. This was compared to the main current method (direct(18)O-liquid water addition) in moist and air-dry soils. We determined the time kinetics and calculated the average(18)O enrichment of soil water over incubation time, which is necessary to calculate microbial growth from(18)O incorporation in genomic DNA. We tested isotopic equilibration patterns in three natural and six artificially constructed soils covering a wide range of soil texture and soil organic matter content. We then measured microbial growth, respiration and carbon use efficiency (CUE) in three natural soils (either air-dry or moist). The proposed(18)O-vapor equilibration method provided similar results as the current method of liquid(18)O-water addition when used for moist soils. However, when applied to air-dry soils the liquid(18)O-water addition method overestimated growth by up to 250%, respiration by up to 500%, and underestimated CUE by up to 40%. We finally describe the new insights into biogeochemical cycling of C that the new method can help uncover, and we consider a range of questions regarding microbial physiology and its response to global change that can now be addressed.
Název v anglickém jazyce
Quantifying microbial growth and carbon use efficiency in dry soil environments via(18)O water vapor equilibration
Popis výsledku anglicky
Soil microbial physiology controls large fluxes of C to the atmosphere, thus, improving our ability to accurately quantify microbial physiology in soil is essential. However, current methods to determine microbial C metabolism require liquid water addition, which makes it practically impossible to measure microbial physiology in dry soil samples without stimulating microbial growth and respiration (namely, the "Birch effect"). We developed a new method based on in vivo(18)O-water vapor equilibration to minimize soil rewetting effects. This method allows the isotopic labeling of soil water without direct liquid water addition. This was compared to the main current method (direct(18)O-liquid water addition) in moist and air-dry soils. We determined the time kinetics and calculated the average(18)O enrichment of soil water over incubation time, which is necessary to calculate microbial growth from(18)O incorporation in genomic DNA. We tested isotopic equilibration patterns in three natural and six artificially constructed soils covering a wide range of soil texture and soil organic matter content. We then measured microbial growth, respiration and carbon use efficiency (CUE) in three natural soils (either air-dry or moist). The proposed(18)O-vapor equilibration method provided similar results as the current method of liquid(18)O-water addition when used for moist soils. However, when applied to air-dry soils the liquid(18)O-water addition method overestimated growth by up to 250%, respiration by up to 500%, and underestimated CUE by up to 40%. We finally describe the new insights into biogeochemical cycling of C that the new method can help uncover, and we consider a range of questions regarding microbial physiology and its response to global change that can now be addressed.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
40104 - Soil science
Návaznosti výsledku
Projekt
<a href="/cs/project/LM2015055" target="_blank" >LM2015055: Centrum pro systémovou biologii</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Global Change Biology
ISSN
1354-1013
e-ISSN
—
Svazek periodika
26
Číslo periodika v rámci svazku
9
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
9
Strana od-do
5333-5341
Kód UT WoS článku
000542362000001
EID výsledku v databázi Scopus
2-s2.0-85087209396