Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Surface Potential and Interfacial Water Order at the Amorphous TiO2 Nanoparticle/Aqueous Interface

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60076658%3A12310%2F20%3A43901132" target="_blank" >RIV/60076658:12310/20:43901132 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://pubs.acs.org/doi/10.1021/acs.jpcc.0c01158" target="_blank" >https://pubs.acs.org/doi/10.1021/acs.jpcc.0c01158</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1021/acs.jpcc.0c01158" target="_blank" >10.1021/acs.jpcc.0c01158</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Surface Potential and Interfacial Water Order at the Amorphous TiO2 Nanoparticle/Aqueous Interface

  • Popis výsledku v původním jazyce

    Colloidal nanoparticles exhibit unique size-dependent properties differing from their bulk counterpart, which can be particularly relevant for catalytic applications. To optimize surface-mediated chemical reactions, the understanding of the microscopic structure of the nanoparticle-liquid interface is of paramount importance. Here we use polarimetric angle-resolved second harmonic scattering (AR-SHS) to determine surface potential values as well as interfacial water orientation of similar to 100 nm diameter amorphous TiO2 nanoparticles dispersed in aqueous solutions, without any initial assumption on the distribution of interfacial charges. We find three regions of different behavior with increasing NaCl concentration. At very low ionic strengths (0-10 mu M), the Na+ ions are preferentially adsorbed at the TiO2 surface as innersphere complexes. At low ionic strengths (10-100 mu M), a distribution of counterions equivalent to a diffuse layer is observed, while at higher ionic strengths (&gt;100 mu M), an additional layer of hydrated condensed ions is formed. We find a similar behavior for TiO2 nanoparticles in solutions of different basic pH. Compared to identically sized SiO2 nanoparticles, the TiO2 interface has a higher affinity for Na+ ions, which we further confirm with molecular dynamics simulations. With its ability to monitor ion adsorption at the surface with micromolar sensitivity and changes in the surface potential, AR-SHS is a powerful tool to investigate interfacial properties in a variety of catalytic and photocatalytic applications.

  • Název v anglickém jazyce

    Surface Potential and Interfacial Water Order at the Amorphous TiO2 Nanoparticle/Aqueous Interface

  • Popis výsledku anglicky

    Colloidal nanoparticles exhibit unique size-dependent properties differing from their bulk counterpart, which can be particularly relevant for catalytic applications. To optimize surface-mediated chemical reactions, the understanding of the microscopic structure of the nanoparticle-liquid interface is of paramount importance. Here we use polarimetric angle-resolved second harmonic scattering (AR-SHS) to determine surface potential values as well as interfacial water orientation of similar to 100 nm diameter amorphous TiO2 nanoparticles dispersed in aqueous solutions, without any initial assumption on the distribution of interfacial charges. We find three regions of different behavior with increasing NaCl concentration. At very low ionic strengths (0-10 mu M), the Na+ ions are preferentially adsorbed at the TiO2 surface as innersphere complexes. At low ionic strengths (10-100 mu M), a distribution of counterions equivalent to a diffuse layer is observed, while at higher ionic strengths (&gt;100 mu M), an additional layer of hydrated condensed ions is formed. We find a similar behavior for TiO2 nanoparticles in solutions of different basic pH. Compared to identically sized SiO2 nanoparticles, the TiO2 interface has a higher affinity for Na+ ions, which we further confirm with molecular dynamics simulations. With its ability to monitor ion adsorption at the surface with micromolar sensitivity and changes in the surface potential, AR-SHS is a powerful tool to investigate interfacial properties in a variety of catalytic and photocatalytic applications.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10403 - Physical chemistry

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GA17-10734S" target="_blank" >GA17-10734S: Molekulární popis jevů v elektrické dvojvrstvě - predikce a interpretace experimentálních dat počítačovými simulacemi</a><br>

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2020

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Journal of Physical Chemistry C

  • ISSN

    1932-7447

  • e-ISSN

  • Svazek periodika

    124

  • Číslo periodika v rámci svazku

    20

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    14

  • Strana od-do

    10961-10974

  • Kód UT WoS článku

    000537428000018

  • EID výsledku v databázi Scopus

    2-s2.0-85088461405