Central-European vegetation types and their optima along successional gradient
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60076658%3A12310%2F20%3A43901303" target="_blank" >RIV/60076658:12310/20:43901303 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/67985939:_____/20:00539975 RIV/00216224:14310/20:00117754
Výsledek na webu
<a href="http://www.preslia.cz/P204Tichy.pdf" target="_blank" >http://www.preslia.cz/P204Tichy.pdf</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.23855/preslia.2020.341" target="_blank" >10.23855/preslia.2020.341</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Central-European vegetation types and their optima along successional gradient
Popis výsledku v původním jazyce
Although the identification of plant communities is the basic language of communication, studies that focus on the classification of vegetation in successional series are rather rare, mainly because it is difficult to identify different types of vegetation. Thanks to formalized algorithms of machine learning, we were able to assign some of vegetation plots stored in a Database of Successional Series (DaSS) to alliances in the vegetation classification system. Of the samples in DaSS 67.4% were classified into 96 vegetation alliances. Classification of the seral stages was then used to predict optima and intervals of occurrence of 33 main types of vegetation in the first 70 years from the onset of succession. In accordance with general expectations, main types of vegetation were arranged at the time-scale from ruderal and segetal vegetation, across grasslands to shrubby and forest vegetation. Successional optima of particular units of vegetation can be used to roughly predict the successional changes at human-disturbed sites in central Europe.
Název v anglickém jazyce
Central-European vegetation types and their optima along successional gradient
Popis výsledku anglicky
Although the identification of plant communities is the basic language of communication, studies that focus on the classification of vegetation in successional series are rather rare, mainly because it is difficult to identify different types of vegetation. Thanks to formalized algorithms of machine learning, we were able to assign some of vegetation plots stored in a Database of Successional Series (DaSS) to alliances in the vegetation classification system. Of the samples in DaSS 67.4% were classified into 96 vegetation alliances. Classification of the seral stages was then used to predict optima and intervals of occurrence of 33 main types of vegetation in the first 70 years from the onset of succession. In accordance with general expectations, main types of vegetation were arranged at the time-scale from ruderal and segetal vegetation, across grasslands to shrubby and forest vegetation. Successional optima of particular units of vegetation can be used to roughly predict the successional changes at human-disturbed sites in central Europe.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10618 - Ecology
Návaznosti výsledku
Projekt
<a href="/cs/project/GA20-06065S" target="_blank" >GA20-06065S: Sukcese vegetace na širokých geografických škálách: Uzrál čas pro meta-analýzy</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Preslia : časopis České botanické společnosti
ISSN
0032-7786
e-ISSN
—
Svazek periodika
92
Číslo periodika v rámci svazku
4
Stát vydavatele periodika
CZ - Česká republika
Počet stran výsledku
12
Strana od-do
341-352
Kód UT WoS článku
000600545400001
EID výsledku v databázi Scopus
2-s2.0-85098693850