Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Anatomical adaptations in aquatic and wetland dicot plants: Disentangling the environmental, morphological and evolutionary signals

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60076658%3A12310%2F21%3A43903049" target="_blank" >RIV/60076658:12310/21:43903049 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/67985939:_____/21:00544012 RIV/00216208:11310/21:10438056

  • Výsledek na webu

    <a href="https://www.sciencedirect.com/science/article/pii/S0098847221001258?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0098847221001258?via%3Dihub</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.envexpbot.2021.104495" target="_blank" >10.1016/j.envexpbot.2021.104495</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Anatomical adaptations in aquatic and wetland dicot plants: Disentangling the environmental, morphological and evolutionary signals

  • Popis výsledku v původním jazyce

    Understanding how plants adjust their internal structures to withstand adverse environmental conditions is vital for predicting their responses to ongoing environmental change. Plants have repeatedly evolved small water transporting conduits and large storage parenchyma tissues to cope with anoxia, freezing- or drought-induced damages. However, how these adaptations evolved in unrelated taxa across hydrological and thermal gradients, remains unclear. Here we show that stem anatomical variations in 212 European aquatic and wetland dicots are driven by thermal and hydrological constraints via control over plant size, growth form, and leaf traits, while phylogenetic constraints have only a weak effect. Phylogenetic comparative analyses controlling for confounding factors showed that both waterlogging (anoxia) and low-temperature promote smaller plants with reduced vessel conduits and limited lignification, but extended parenchyma and hence storage and tissue renewal capacity to secure resilience to biomass loss induced by running water or frost disturbances. Decreasing water depth and anoxia promote larger wetland plants with thick-walled libriform fibers, large vessels with simple perforation plates securing high hydraulic efficiency, and semi-ring porous xylem with wide earlywood vessels in spring and narrow latewood vessels in summer, providing both efficiency and safety in water transport. The aquatic environment promotes plants with a large cortex zone with photosynthetic chlorenchyma and starch-storing parenchyma cells along with extensive air spaces that provide aeration and buoyancy. Low temperatures promote short-stature forbs with smaller vessels, scalariform perforation plate, extended parenchyma, resulting in reduced embolism risk. Although most anatomical variation was explained by differences between aquatic and wet terrestrial growth forms, environmental gradients, plant size, and leaf properties exerted a significant control on plant tissue structures not confounded by phylogenetic inertia. Distinct habitats, spread across broad thermal and hydrological gradients, harbor unrelated species with different evolutionary histories that have converged to similar anatomical and hence morphological structures.

  • Název v anglickém jazyce

    Anatomical adaptations in aquatic and wetland dicot plants: Disentangling the environmental, morphological and evolutionary signals

  • Popis výsledku anglicky

    Understanding how plants adjust their internal structures to withstand adverse environmental conditions is vital for predicting their responses to ongoing environmental change. Plants have repeatedly evolved small water transporting conduits and large storage parenchyma tissues to cope with anoxia, freezing- or drought-induced damages. However, how these adaptations evolved in unrelated taxa across hydrological and thermal gradients, remains unclear. Here we show that stem anatomical variations in 212 European aquatic and wetland dicots are driven by thermal and hydrological constraints via control over plant size, growth form, and leaf traits, while phylogenetic constraints have only a weak effect. Phylogenetic comparative analyses controlling for confounding factors showed that both waterlogging (anoxia) and low-temperature promote smaller plants with reduced vessel conduits and limited lignification, but extended parenchyma and hence storage and tissue renewal capacity to secure resilience to biomass loss induced by running water or frost disturbances. Decreasing water depth and anoxia promote larger wetland plants with thick-walled libriform fibers, large vessels with simple perforation plates securing high hydraulic efficiency, and semi-ring porous xylem with wide earlywood vessels in spring and narrow latewood vessels in summer, providing both efficiency and safety in water transport. The aquatic environment promotes plants with a large cortex zone with photosynthetic chlorenchyma and starch-storing parenchyma cells along with extensive air spaces that provide aeration and buoyancy. Low temperatures promote short-stature forbs with smaller vessels, scalariform perforation plate, extended parenchyma, resulting in reduced embolism risk. Although most anatomical variation was explained by differences between aquatic and wet terrestrial growth forms, environmental gradients, plant size, and leaf properties exerted a significant control on plant tissue structures not confounded by phylogenetic inertia. Distinct habitats, spread across broad thermal and hydrological gradients, harbor unrelated species with different evolutionary histories that have converged to similar anatomical and hence morphological structures.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10611 - Plant sciences, botany

Návaznosti výsledku

  • Projekt

    Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2021

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Environmental and Experimental Botany

  • ISSN

    0098-8472

  • e-ISSN

  • Svazek periodika

    187

  • Číslo periodika v rámci svazku

    JUL 2021

  • Stát vydavatele periodika

    GB - Spojené království Velké Británie a Severního Irska

  • Počet stran výsledku

    12

  • Strana od-do

  • Kód UT WoS článku

    000652651200003

  • EID výsledku v databázi Scopus

    2-s2.0-85104928400