Restoring a butterfly hot spot by large ungulates refaunation: the case of the Milovice military training range, Czech Republic
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60076658%3A12310%2F21%3A43903105" target="_blank" >RIV/60076658:12310/21:43903105 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/60077344:_____/21:00542115
Výsledek na webu
<a href="https://bmcecolevol.biomedcentral.com/articles/10.1186/s12862-021-01804-x" target="_blank" >https://bmcecolevol.biomedcentral.com/articles/10.1186/s12862-021-01804-x</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1186/s12862-021-01804-x" target="_blank" >10.1186/s12862-021-01804-x</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Restoring a butterfly hot spot by large ungulates refaunation: the case of the Milovice military training range, Czech Republic
Popis výsledku v původním jazyce
Background Refaunation/rewilding by large ungulates represents a cost-efficient approach to managing natural biotopes and may be particularly useful for areas whose biodiversity depends on disturbance dynamics and is imperilled by successional changes. To study impacts of refaunation on invertebrates, we focused on butterflies inhabiting the former military training range Milovice, Czech Republic, refaunated since 2015 by a combination of Exmoor pony ("wild" horse), Tauros cattle ("aurochs"), and European wisent. Methods We analysed butterfly presence-absence patterns immediately after the military use termination (early 1990s), prior to the refaunation (2009), and after it (2016-19); and current abundance data gained by monitoring butterflies at refaunated and neglected plots. We used correspondence analysis for the presence-absence comparison and canonical correspondence analysis for the current monitoring, and related results of both ordination methods to the life history and climatic traits, and conservation-related attributes, of recorded butterflies. Results Following the termination of military use, several poorly mobile species inclining towards oceanic climates were lost. Newly gained are mobile species preferring warmer continental conditions. The refaunated plots hosted higher butterfly species richness and abundances. Larger-bodied butterflies developing on coarse grasses and shrubs inclined towards neglected plots, whereas refaunated plots supported smaller species developing on small forbs. Conclusion The changes in species composition following the cessation of military use were attributable to successional change, coupled with changes in species pool operating at larger scales. By blocking succession, large ungulates support butterflies depending on competitively poor plants. Restoring large ungulates populations represents a great hope for conserving specialised insects, provided that settings of the projects, and locally adapted ungulate densities, do not deplete resources for species with often contrasting requirements.
Název v anglickém jazyce
Restoring a butterfly hot spot by large ungulates refaunation: the case of the Milovice military training range, Czech Republic
Popis výsledku anglicky
Background Refaunation/rewilding by large ungulates represents a cost-efficient approach to managing natural biotopes and may be particularly useful for areas whose biodiversity depends on disturbance dynamics and is imperilled by successional changes. To study impacts of refaunation on invertebrates, we focused on butterflies inhabiting the former military training range Milovice, Czech Republic, refaunated since 2015 by a combination of Exmoor pony ("wild" horse), Tauros cattle ("aurochs"), and European wisent. Methods We analysed butterfly presence-absence patterns immediately after the military use termination (early 1990s), prior to the refaunation (2009), and after it (2016-19); and current abundance data gained by monitoring butterflies at refaunated and neglected plots. We used correspondence analysis for the presence-absence comparison and canonical correspondence analysis for the current monitoring, and related results of both ordination methods to the life history and climatic traits, and conservation-related attributes, of recorded butterflies. Results Following the termination of military use, several poorly mobile species inclining towards oceanic climates were lost. Newly gained are mobile species preferring warmer continental conditions. The refaunated plots hosted higher butterfly species richness and abundances. Larger-bodied butterflies developing on coarse grasses and shrubs inclined towards neglected plots, whereas refaunated plots supported smaller species developing on small forbs. Conclusion The changes in species composition following the cessation of military use were attributable to successional change, coupled with changes in species pool operating at larger scales. By blocking succession, large ungulates support butterflies depending on competitively poor plants. Restoring large ungulates populations represents a great hope for conserving specialised insects, provided that settings of the projects, and locally adapted ungulate densities, do not deplete resources for species with often contrasting requirements.
Klasifikace
Druh
J<sub>SC</sub> - Článek v periodiku v databázi SCOPUS
CEP obor
—
OECD FORD obor
10616 - Entomology
Návaznosti výsledku
Projekt
<a href="/cs/project/SS01010526" target="_blank" >SS01010526: Mitigace důsledků globální klimatické změny na denní motýly zahrnuté do Směrnice o stanovištích EU</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
BMC Ecology and Evolution
ISSN
2730-7182
e-ISSN
—
Svazek periodika
21
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
18
Strana od-do
—
Kód UT WoS článku
000646837500001
EID výsledku v databázi Scopus
2-s2.0-85105212984