Effects of Externally Applied Electric Fields on the Manipulation of Solvated-Chignolin Folding: Static- versus Alternating-Field Dichotomy at Play
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60076658%3A12310%2F22%3A43904899" target="_blank" >RIV/60076658:12310/22:43904899 - isvavai.cz</a>
Výsledek na webu
<a href="https://pubs.acs.org/doi/pdf/10.1021/acs.jpcb.1c06857" target="_blank" >https://pubs.acs.org/doi/pdf/10.1021/acs.jpcb.1c06857</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1021/acs.jpcb.1c06857" target="_blank" >10.1021/acs.jpcb.1c06857</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Effects of Externally Applied Electric Fields on the Manipulation of Solvated-Chignolin Folding: Static- versus Alternating-Field Dichotomy at Play
Popis výsledku v původním jazyce
The interaction between a protein and external electric field (EF) can alter its structure and dynamical behavior, which has a potential impact on the biological function of proteins and cause uncertain health consequences. Conversely, the application of EFs of judiciously selected intensity and frequency can help to treat disease, and optimization of this requires a greater understanding of EF-induced effects underpinning basic protein biophysics. In the present study, chignolin-an artificial protein sufficiently small to undergo fast-folding events and transitions-was selected as an ideal prototype to investigate how, and to what extent, externally applied electric fields may manipulate or influence protein-folding phenomena. Nonequilibrium molecular dynamics (NEMD) simulations have been performed of solvated chignolin to determine the distribution of folding states and their underlying transition dynamics, in the absence and presence of externally applied electric fields (both static and alternating); a key focus has been to ascertain how folding pathways are altered in an athermal sense by external fields. Compared to zero-field conditions, a dramatically different-indeed, bifurcated-behavior of chignolin-folding processes emerges between static- and alternating-field scenarios, especially vis-a-vis incipient stages of hydrophobic-core formation: in alternating fields, fold-state populations diversified, with an attendant acceleration of state-hopping folding kinetics, featuring the concomitant emergence of a new, quasi-stable structure compared to the native structure, in field-shifted energy landscapes.
Název v anglickém jazyce
Effects of Externally Applied Electric Fields on the Manipulation of Solvated-Chignolin Folding: Static- versus Alternating-Field Dichotomy at Play
Popis výsledku anglicky
The interaction between a protein and external electric field (EF) can alter its structure and dynamical behavior, which has a potential impact on the biological function of proteins and cause uncertain health consequences. Conversely, the application of EFs of judiciously selected intensity and frequency can help to treat disease, and optimization of this requires a greater understanding of EF-induced effects underpinning basic protein biophysics. In the present study, chignolin-an artificial protein sufficiently small to undergo fast-folding events and transitions-was selected as an ideal prototype to investigate how, and to what extent, externally applied electric fields may manipulate or influence protein-folding phenomena. Nonequilibrium molecular dynamics (NEMD) simulations have been performed of solvated chignolin to determine the distribution of folding states and their underlying transition dynamics, in the absence and presence of externally applied electric fields (both static and alternating); a key focus has been to ascertain how folding pathways are altered in an athermal sense by external fields. Compared to zero-field conditions, a dramatically different-indeed, bifurcated-behavior of chignolin-folding processes emerges between static- and alternating-field scenarios, especially vis-a-vis incipient stages of hydrophobic-core formation: in alternating fields, fold-state populations diversified, with an attendant acceleration of state-hopping folding kinetics, featuring the concomitant emergence of a new, quasi-stable structure compared to the native structure, in field-shifted energy landscapes.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10403 - Physical chemistry
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Physical Chemistry B
ISSN
1520-6106
e-ISSN
—
Svazek periodika
126
Číslo periodika v rámci svazku
2
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
11
Strana od-do
376-386
Kód UT WoS článku
000743184800001
EID výsledku v databázi Scopus
2-s2.0-85123373009