Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Effects of Externally Applied Electric Fields on the Manipulation of Solvated-Chignolin Folding: Static- versus Alternating-Field Dichotomy at Play

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60076658%3A12310%2F22%3A43904899" target="_blank" >RIV/60076658:12310/22:43904899 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://pubs.acs.org/doi/pdf/10.1021/acs.jpcb.1c06857" target="_blank" >https://pubs.acs.org/doi/pdf/10.1021/acs.jpcb.1c06857</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1021/acs.jpcb.1c06857" target="_blank" >10.1021/acs.jpcb.1c06857</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Effects of Externally Applied Electric Fields on the Manipulation of Solvated-Chignolin Folding: Static- versus Alternating-Field Dichotomy at Play

  • Popis výsledku v původním jazyce

    The interaction between a protein and external electric field (EF) can alter its structure and dynamical behavior, which has a potential impact on the biological function of proteins and cause uncertain health consequences. Conversely, the application of EFs of judiciously selected intensity and frequency can help to treat disease, and optimization of this requires a greater understanding of EF-induced effects underpinning basic protein biophysics. In the present study, chignolin-an artificial protein sufficiently small to undergo fast-folding events and transitions-was selected as an ideal prototype to investigate how, and to what extent, externally applied electric fields may manipulate or influence protein-folding phenomena. Nonequilibrium molecular dynamics (NEMD) simulations have been performed of solvated chignolin to determine the distribution of folding states and their underlying transition dynamics, in the absence and presence of externally applied electric fields (both static and alternating); a key focus has been to ascertain how folding pathways are altered in an athermal sense by external fields. Compared to zero-field conditions, a dramatically different-indeed, bifurcated-behavior of chignolin-folding processes emerges between static- and alternating-field scenarios, especially vis-a-vis incipient stages of hydrophobic-core formation: in alternating fields, fold-state populations diversified, with an attendant acceleration of state-hopping folding kinetics, featuring the concomitant emergence of a new, quasi-stable structure compared to the native structure, in field-shifted energy landscapes.

  • Název v anglickém jazyce

    Effects of Externally Applied Electric Fields on the Manipulation of Solvated-Chignolin Folding: Static- versus Alternating-Field Dichotomy at Play

  • Popis výsledku anglicky

    The interaction between a protein and external electric field (EF) can alter its structure and dynamical behavior, which has a potential impact on the biological function of proteins and cause uncertain health consequences. Conversely, the application of EFs of judiciously selected intensity and frequency can help to treat disease, and optimization of this requires a greater understanding of EF-induced effects underpinning basic protein biophysics. In the present study, chignolin-an artificial protein sufficiently small to undergo fast-folding events and transitions-was selected as an ideal prototype to investigate how, and to what extent, externally applied electric fields may manipulate or influence protein-folding phenomena. Nonequilibrium molecular dynamics (NEMD) simulations have been performed of solvated chignolin to determine the distribution of folding states and their underlying transition dynamics, in the absence and presence of externally applied electric fields (both static and alternating); a key focus has been to ascertain how folding pathways are altered in an athermal sense by external fields. Compared to zero-field conditions, a dramatically different-indeed, bifurcated-behavior of chignolin-folding processes emerges between static- and alternating-field scenarios, especially vis-a-vis incipient stages of hydrophobic-core formation: in alternating fields, fold-state populations diversified, with an attendant acceleration of state-hopping folding kinetics, featuring the concomitant emergence of a new, quasi-stable structure compared to the native structure, in field-shifted energy landscapes.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10403 - Physical chemistry

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2022

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Journal of Physical Chemistry B

  • ISSN

    1520-6106

  • e-ISSN

  • Svazek periodika

    126

  • Číslo periodika v rámci svazku

    2

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    11

  • Strana od-do

    376-386

  • Kód UT WoS článku

    000743184800001

  • EID výsledku v databázi Scopus

    2-s2.0-85123373009