A Systematic Mapping Study of Predictive Maintenance in SMEs
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60076658%3A12310%2F22%3A43905403" target="_blank" >RIV/60076658:12310/22:43905403 - isvavai.cz</a>
Výsledek na webu
<a href="https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9864153" target="_blank" >https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9864153</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/ACCESS.2022.3200694" target="_blank" >10.1109/ACCESS.2022.3200694</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
A Systematic Mapping Study of Predictive Maintenance in SMEs
Popis výsledku v původním jazyce
The rapid growth of Industry 4.0 and predictive methods fostered a great potential for state-of-the-art techniques in the industrial sector, especially in smart factories. The equipment failure or system breakdowns during run time of a factory creates a severe problems towards impoverishment of the production system and destitution of the business. Predictive Maintenance (PdM) is a cost-saving and data driven technique to predict the maintenance time of in-service equipment or systems to reduce breakdown time and increase productivity. Although PdM is pragmatically adopted in large-scale industries, there is a lack of studies that map the PdM adoption in small and medium-sized enterprises (SMEs). In this systematic mapping study (SMS), we focus on predictive maintenance from an SME perspective to explore the field for researchers, scientists, and developers to comprehend the potential of PdM systems, their challenges, distinctive characteristics, and best practices in SMEs. Our study is based on four research questions comprised of demographic data, key challenges, distinctive characteristics, and best practices of predictive maintenance in SMEs. We found that the current literature on PdM is deficient in the SME domain, especially the financial side is vague. There is a huge potential for PdM in SMEs to design cost models and focus on data availability impediments. Management and monitoring of PdM and skilled personnel are also inadequate. Thus, we present a study that extracts the knowledge from the existing literature about PdM in SMEs, finds the research gap, and can assist in identifying the barriers and challenges of PdM adoption in SMEs.
Název v anglickém jazyce
A Systematic Mapping Study of Predictive Maintenance in SMEs
Popis výsledku anglicky
The rapid growth of Industry 4.0 and predictive methods fostered a great potential for state-of-the-art techniques in the industrial sector, especially in smart factories. The equipment failure or system breakdowns during run time of a factory creates a severe problems towards impoverishment of the production system and destitution of the business. Predictive Maintenance (PdM) is a cost-saving and data driven technique to predict the maintenance time of in-service equipment or systems to reduce breakdown time and increase productivity. Although PdM is pragmatically adopted in large-scale industries, there is a lack of studies that map the PdM adoption in small and medium-sized enterprises (SMEs). In this systematic mapping study (SMS), we focus on predictive maintenance from an SME perspective to explore the field for researchers, scientists, and developers to comprehend the potential of PdM systems, their challenges, distinctive characteristics, and best practices in SMEs. Our study is based on four research questions comprised of demographic data, key challenges, distinctive characteristics, and best practices of predictive maintenance in SMEs. We found that the current literature on PdM is deficient in the SME domain, especially the financial side is vague. There is a huge potential for PdM in SMEs to design cost models and focus on data availability impediments. Management and monitoring of PdM and skilled personnel are also inadequate. Thus, we present a study that extracts the knowledge from the existing literature about PdM in SMEs, finds the research gap, and can assist in identifying the barriers and challenges of PdM adoption in SMEs.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
IEEE Access
ISSN
2169-3536
e-ISSN
2169-3536
Svazek periodika
10
Číslo periodika v rámci svazku
2022
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
12
Strana od-do
88738-88749
Kód UT WoS článku
000848164300001
EID výsledku v databázi Scopus
2-s2.0-85137575098