Raman Vibrational Signatures of Excited States of Echinenone in the Orange Carotenoid Protein (OCP) and Implications for its Photoactivation Mechanism
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60076658%3A12310%2F24%3A43908439" target="_blank" >RIV/60076658:12310/24:43908439 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/CZ______:_____/24:N0000042
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S0022283624002201?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0022283624002201?via%3Dihub</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.jmb.2024.168625" target="_blank" >10.1016/j.jmb.2024.168625</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Raman Vibrational Signatures of Excited States of Echinenone in the Orange Carotenoid Protein (OCP) and Implications for its Photoactivation Mechanism
Popis výsledku v původním jazyce
In this study, the vibrational characteristics of optically excited echinenone in various solvents and the Orange Carotenoid Protein (OCP) in red and orange states are systematically investigated through steady-state and time-resolved spectroscopy techniques. Time-resolved experiments, employing both Transient Absorption (TA) and Femtosecond Stimulated Raman Spectroscopy (FSRS), reveal different states in the OCP photoactivation process. The time-resolved studies indicate vibrational signatures of exited states positioned above the S1 1 state during the initial 140 fs of carotenoid evolution in OCP, an absence of a vibrational signature for the relaxed S1 1 state of echinenone in OCP, and more robust signatures of a highly excited ground state (GS) in OCP. Differences in S1 1 state vibration population signatures between OCP and solvents are attributed to distinct conformations of echinenone in OCP and hydrogen bonds at the keto group forming a short-lived intramolecular charge transfer (ICT) state. The vibrational dynamics of the hot GS in OCP show a more pronounced red shift of ground state C@C vibration compared to echinenone in solvents, thus suggesting an unusually hot form of GS. The study proposes a hypothesis for the photoactivation mechanism of OCP, emphasizing the high level of vibrational excitation in longitudinal stretching modes as a driving force. In conclusion, the comparison of vibrational signatures reveals unique dynamics of energy dissipation in OCP, providing insights into the photoactivation mechanism and highlighting the impact of the protein environment on carotenoid behavior. The study underscores the importance of vibrational analysis in understanding the intricate processes involved in early phase OCP photoactivation. (c) 2024 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
Název v anglickém jazyce
Raman Vibrational Signatures of Excited States of Echinenone in the Orange Carotenoid Protein (OCP) and Implications for its Photoactivation Mechanism
Popis výsledku anglicky
In this study, the vibrational characteristics of optically excited echinenone in various solvents and the Orange Carotenoid Protein (OCP) in red and orange states are systematically investigated through steady-state and time-resolved spectroscopy techniques. Time-resolved experiments, employing both Transient Absorption (TA) and Femtosecond Stimulated Raman Spectroscopy (FSRS), reveal different states in the OCP photoactivation process. The time-resolved studies indicate vibrational signatures of exited states positioned above the S1 1 state during the initial 140 fs of carotenoid evolution in OCP, an absence of a vibrational signature for the relaxed S1 1 state of echinenone in OCP, and more robust signatures of a highly excited ground state (GS) in OCP. Differences in S1 1 state vibration population signatures between OCP and solvents are attributed to distinct conformations of echinenone in OCP and hydrogen bonds at the keto group forming a short-lived intramolecular charge transfer (ICT) state. The vibrational dynamics of the hot GS in OCP show a more pronounced red shift of ground state C@C vibration compared to echinenone in solvents, thus suggesting an unusually hot form of GS. The study proposes a hypothesis for the photoactivation mechanism of OCP, emphasizing the high level of vibrational excitation in longitudinal stretching modes as a driving force. In conclusion, the comparison of vibrational signatures reveals unique dynamics of energy dissipation in OCP, providing insights into the photoactivation mechanism and highlighting the impact of the protein environment on carotenoid behavior. The study underscores the importance of vibrational analysis in understanding the intricate processes involved in early phase OCP photoactivation. (c) 2024 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10610 - Biophysics
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Molecular Biology
ISSN
0022-2836
e-ISSN
—
Svazek periodika
436
Číslo periodika v rámci svazku
16
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
17
Strana od-do
—
Kód UT WoS článku
001285767800001
EID výsledku v databázi Scopus
2-s2.0-85195031167