Uncovering of interesting structures in bank loan data through Bayesian networks
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60076658%3A12510%2F15%3A43890322" target="_blank" >RIV/60076658:12510/15:43890322 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Uncovering of interesting structures in bank loan data through Bayesian networks
Popis výsledku v původním jazyce
Given the explosive growth of data collected from current business environment, data mining methods can potentially discover new business knowledge to improve managerial decision. In This paper we use relatively novel data mining approach that employs discrete Bayesian network methodology to discover knowledge from data. More concretely we try to uncover structure and relationship among some socio-economic characteristics gathered by bank institution and credit risk in some sample of credit applicants.All data were collected during the 2013 - 2014. For this purpose we used two algorithms for Bayesian network structure discovering, namely hill climbing and growth-shrinking algorithms with a priori assigned relationship among some subset of socio-economics variables. The resulting structure was compared to others to BN. As a best BN model was identified structure without any implied restriction and derived by hill-climbing algorithm. BIC score for our best model was -13147.55. This "bes
Název v anglickém jazyce
Uncovering of interesting structures in bank loan data through Bayesian networks
Popis výsledku anglicky
Given the explosive growth of data collected from current business environment, data mining methods can potentially discover new business knowledge to improve managerial decision. In This paper we use relatively novel data mining approach that employs discrete Bayesian network methodology to discover knowledge from data. More concretely we try to uncover structure and relationship among some socio-economic characteristics gathered by bank institution and credit risk in some sample of credit applicants.All data were collected during the 2013 - 2014. For this purpose we used two algorithms for Bayesian network structure discovering, namely hill climbing and growth-shrinking algorithms with a priori assigned relationship among some subset of socio-economics variables. The resulting structure was compared to others to BN. As a best BN model was identified structure without any implied restriction and derived by hill-climbing algorithm. BIC score for our best model was -13147.55. This "bes
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
BB - Aplikovaná statistika, operační výzkum
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2015
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
ICABR 2015, X. International Conference on Applied Business Research
ISBN
978-80-7509-379-0
ISSN
—
e-ISSN
—
Počet stran výsledku
887
Strana od-do
881
Název nakladatele
Mendelova univerzita v Brně
Místo vydání
Brno
Místo konání akce
Madrid
Datum konání akce
14. 9. 2015
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—