European insurance market analysis via functional data clustering techniques
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60076658%3A12510%2F19%3A43899876" target="_blank" >RIV/60076658:12510/19:43899876 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
European insurance market analysis via functional data clustering techniques
Popis výsledku v původním jazyce
Insurance penetration as a high-level indicator of an insurance market’s development exhibits significant variations over time across countries. Cross-country comparisons on the link between insurance and economic growth are better off when insurance development homogeneity is present. Motivated by this evidence, this study is aimed to provide a data-driven and meaningful clustering of European countries in terms of their insurance penetration rates that are considered as functions (curves). The ultimate goal is the extraction and visualization of the representative curves that characterize the homogeneous clusters of European insurance market. To this end, we apply functional data clustering methodsthat fall into three major categories: distancebased methods, filtering methods, and adaptive methods. The data consist of insurance penetration rates sampled from 34 European countries and observed between 2004 and 2016; that is before, during and post-financial and sovereign debt crises. Our results - the clusters- are analyzed from a qualitative point of view, detecting visually whether they are distinguishable and preserve the magnitude and shape of the cluster member curves.
Název v anglickém jazyce
European insurance market analysis via functional data clustering techniques
Popis výsledku anglicky
Insurance penetration as a high-level indicator of an insurance market’s development exhibits significant variations over time across countries. Cross-country comparisons on the link between insurance and economic growth are better off when insurance development homogeneity is present. Motivated by this evidence, this study is aimed to provide a data-driven and meaningful clustering of European countries in terms of their insurance penetration rates that are considered as functions (curves). The ultimate goal is the extraction and visualization of the representative curves that characterize the homogeneous clusters of European insurance market. To this end, we apply functional data clustering methodsthat fall into three major categories: distancebased methods, filtering methods, and adaptive methods. The data consist of insurance penetration rates sampled from 34 European countries and observed between 2004 and 2016; that is before, during and post-financial and sovereign debt crises. Our results - the clusters- are analyzed from a qualitative point of view, detecting visually whether they are distinguishable and preserve the magnitude and shape of the cluster member curves.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
50206 - Finance
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Conference Proceedings of 37th International Conference on Mathematical Methods in Economics 2019
ISBN
978-80-7394-760-6
ISSN
—
e-ISSN
—
Počet stran výsledku
6
Strana od-do
179-184
Název nakladatele
University of South Bohemia in České Budějovice, Faculty of Economics
Místo vydání
České Budějovice
Místo konání akce
České Budějovice
Datum konání akce
11. 9. 2019
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000507570400029