Revisiting the random shift approach for testing in spatial statistics
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60076658%3A12510%2F21%3A43900865" target="_blank" >RIV/60076658:12510/21:43900865 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/00216208:11320/21:10434480
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S2211675320300245?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S2211675320300245?via%3Dihub</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.spasta.2020.100430" target="_blank" >10.1016/j.spasta.2020.100430</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Revisiting the random shift approach for testing in spatial statistics
Popis výsledku v původním jazyce
We consider the problem of non-parametric testing of independence of two components of a stationary bivariate spatial process. In particular, we revisit the random shift approach that has become the standard method for testing the independent superposition hypothesis in spatial statistics, and it is widely used in a plethora of practical applications. However, this method has a problem of liberality caused by breaking the marginal spatial correlation structure due to the toroidal correction. This indeed means that the assumption of exchangeability, which is essential for the Monte Carlo test to be exact, is not fulfilled. We present a number of permutation strategies and show that the random shift with the variance correction brings a suitable improvement compared to the torus correction in the random field case. It reduces the liberality and achieves the largest power from all investigated variants. To obtain the variance for the variance correction method, several approaches were studied. The best results were achieved, for the sample covariance as the test statistics, with the correction factor . This corresponds to the asymptotic order of the variance of the test statistics.In the point process case, the problem of deviations from exchangeability is far more complex and we propose an alternative strategy based on the mean cross nearest-neighbor distance and torus correction. It reduces the liberality but achieves slightly lower power than the usual cross K-function. Therefore we recommend it, when the point patterns are clustered, where the cross K-function achieves liberality.
Název v anglickém jazyce
Revisiting the random shift approach for testing in spatial statistics
Popis výsledku anglicky
We consider the problem of non-parametric testing of independence of two components of a stationary bivariate spatial process. In particular, we revisit the random shift approach that has become the standard method for testing the independent superposition hypothesis in spatial statistics, and it is widely used in a plethora of practical applications. However, this method has a problem of liberality caused by breaking the marginal spatial correlation structure due to the toroidal correction. This indeed means that the assumption of exchangeability, which is essential for the Monte Carlo test to be exact, is not fulfilled. We present a number of permutation strategies and show that the random shift with the variance correction brings a suitable improvement compared to the torus correction in the random field case. It reduces the liberality and achieves the largest power from all investigated variants. To obtain the variance for the variance correction method, several approaches were studied. The best results were achieved, for the sample covariance as the test statistics, with the correction factor . This corresponds to the asymptotic order of the variance of the test statistics.In the point process case, the problem of deviations from exchangeability is far more complex and we propose an alternative strategy based on the mean cross nearest-neighbor distance and torus correction. It reduces the liberality but achieves slightly lower power than the usual cross K-function. Therefore we recommend it, when the point patterns are clustered, where the cross K-function achieves liberality.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10103 - Statistics and probability
Návaznosti výsledku
Projekt
<a href="/cs/project/GA19-04412S" target="_blank" >GA19-04412S: Nové přístupy k modelování a statistice náhodných množin</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Spatial Statistics
ISSN
2211-6753
e-ISSN
—
Svazek periodika
2021
Číslo periodika v rámci svazku
42
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
17
Strana od-do
1-17
Kód UT WoS článku
000635279000007
EID výsledku v databázi Scopus
2-s2.0-85080869183