Effects of the lipid regulator drug gemfibrozil: A toxicological and behavioral perspective
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60076658%3A12520%2F16%3A43890387" target="_blank" >RIV/60076658:12520/16:43890387 - isvavai.cz</a>
Výsledek na webu
<a href="http://www.sciencedirect.com/science/article/pii/S0166445X15300576" target="_blank" >http://www.sciencedirect.com/science/article/pii/S0166445X15300576</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.aquatox.2015.09.017" target="_blank" >10.1016/j.aquatox.2015.09.017</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Effects of the lipid regulator drug gemfibrozil: A toxicological and behavioral perspective
Popis výsledku v původním jazyce
Pharmaceuticals are emerging contaminants as their worldwide consumption increases. Fibrates such as gemfibrozil (GEM) are used in human medicine to reduce blood concentrations of cholesterol and triacylglycerol and also are some of the most frequently reported pharmaceuticals in waste waters and surface waters. Despite some studies have already demonstrated the negative impact in physiological and/or reproductive endpoints in adult fish, data on survival and behavioral effects in fish larvae are lacking. This study aimed to assess the effects of GEM on zebrafish eleutheroembryo development and locomotor behavior. A fish embryo toxicity (FET) test was undertaken to evaluate GEM acute toxicity by exposing embryos to 0, 6.58, 9.87, 14.81, 22.22, 33.33 and 50 mg/L. Developmental endpoints such as hatching success, edemas and malformations were recorded. A second test was undertaken by exposing embryos to 0, 1.5, 3 and 6 mg/L in order to evaluate the effects of GEM on 120 and 144 h post fertilization (hpf) larvae locomotor activity by video tracking, using a Zebrabox (R) (Viewpoint, France) device. From the data recorded, several parameters such as total swimming distance (TSD) and total swimming time (TST) in each 120 s integration time were calculated. Data showed that this compound has a moderate toxic effect on fish embryo development, affecting both survival and hatching success with a calculated 96 h LC50 of 11.01 mg/L and no effects at the developmental level at 6 mg/L. GEM seems to impair locomotor activity, even at concentrations where developmental abnormalities were unperceived, at concentrations as low as 1.5 mg/L. Both TSD and TST were sensitive to GEM exposure. These effects do not seem to be independent of the developmental stage as 120 hpf larvae seem to present a development bias with repercussions in locomotor behavior.
Název v anglickém jazyce
Effects of the lipid regulator drug gemfibrozil: A toxicological and behavioral perspective
Popis výsledku anglicky
Pharmaceuticals are emerging contaminants as their worldwide consumption increases. Fibrates such as gemfibrozil (GEM) are used in human medicine to reduce blood concentrations of cholesterol and triacylglycerol and also are some of the most frequently reported pharmaceuticals in waste waters and surface waters. Despite some studies have already demonstrated the negative impact in physiological and/or reproductive endpoints in adult fish, data on survival and behavioral effects in fish larvae are lacking. This study aimed to assess the effects of GEM on zebrafish eleutheroembryo development and locomotor behavior. A fish embryo toxicity (FET) test was undertaken to evaluate GEM acute toxicity by exposing embryos to 0, 6.58, 9.87, 14.81, 22.22, 33.33 and 50 mg/L. Developmental endpoints such as hatching success, edemas and malformations were recorded. A second test was undertaken by exposing embryos to 0, 1.5, 3 and 6 mg/L in order to evaluate the effects of GEM on 120 and 144 h post fertilization (hpf) larvae locomotor activity by video tracking, using a Zebrabox (R) (Viewpoint, France) device. From the data recorded, several parameters such as total swimming distance (TSD) and total swimming time (TST) in each 120 s integration time were calculated. Data showed that this compound has a moderate toxic effect on fish embryo development, affecting both survival and hatching success with a calculated 96 h LC50 of 11.01 mg/L and no effects at the developmental level at 6 mg/L. GEM seems to impair locomotor activity, even at concentrations where developmental abnormalities were unperceived, at concentrations as low as 1.5 mg/L. Both TSD and TST were sensitive to GEM exposure. These effects do not seem to be independent of the developmental stage as 120 hpf larvae seem to present a development bias with repercussions in locomotor behavior.
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
DJ - Znečištění a kontrola vody
OECD FORD obor
—
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2016
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Aquatic Toxicology
ISSN
0166-445X
e-ISSN
—
Svazek periodika
170
Číslo periodika v rámci svazku
Neuveden
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
10
Strana od-do
355-364
Kód UT WoS článku
000368564500038
EID výsledku v databázi Scopus
—