Leaf chlorophyll and nitrogen dynamics and their relationship to lowland rice yield for site-specific paddy management
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60076658%3A12520%2F17%3A43895542" target="_blank" >RIV/60076658:12520/17:43895542 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/60460709:41210/17:74676
Výsledek na webu
<a href="https://doi.org/10.1016/j.inpa.2017.08.002" target="_blank" >https://doi.org/10.1016/j.inpa.2017.08.002</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.inpa.2017.08.002" target="_blank" >10.1016/j.inpa.2017.08.002</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Leaf chlorophyll and nitrogen dynamics and their relationship to lowland rice yield for site-specific paddy management
Popis výsledku v původním jazyce
The optimum rate and application timing of Nitrogen (N) fertilizer are crucial in achieving a high yield in rice cultivation; however, conventional laboratory testing of plant nutrients is time-consuming and expensive. To develop a site-specific spatial variable rate application method to overcome the limitations of traditional techniques, especially in fields under a double-cropping system, this study focused on the relationship between Soil Plant Analysis Development (SPAD) chlorophyll meter readings and N content in leaves during different growth stages to introduce the most suitable stage for assessment of crop N and prediction of rice yield. The SPAD readings and leaf N content were measured on the uppermost fully expanded leaf at panicle formation and booting stages. Grain yield was also measured at the end of the season. The analysis of variance, variogram, and kriging were calculated to determine the variability of attributes and their relationship, and finally, variability maps were created. Significant linear relationships were observed between attributes, with the same trends in different sampling dates; however, accuracy of semivariance estimation reduces with the growth stage. Results of the study also implied that there was a better relationship between rice leaf N content (R2 = 0.93), as well as yield (R2 = 0.81), with SPAD readings at the panicle formation stage. Therefore, the SPAD-based evaluation of N status and prediction of rice yield is more reliable on this stage rather than at the booting stage. This study proved that the application of SPAD chlorophyll meter paves the way for real-time paddy N management and grain yield estimation. It can be reliably exploited in precision agriculture of paddy fields under double-cropping cultivation to understand and control spatial variations.
Název v anglickém jazyce
Leaf chlorophyll and nitrogen dynamics and their relationship to lowland rice yield for site-specific paddy management
Popis výsledku anglicky
The optimum rate and application timing of Nitrogen (N) fertilizer are crucial in achieving a high yield in rice cultivation; however, conventional laboratory testing of plant nutrients is time-consuming and expensive. To develop a site-specific spatial variable rate application method to overcome the limitations of traditional techniques, especially in fields under a double-cropping system, this study focused on the relationship between Soil Plant Analysis Development (SPAD) chlorophyll meter readings and N content in leaves during different growth stages to introduce the most suitable stage for assessment of crop N and prediction of rice yield. The SPAD readings and leaf N content were measured on the uppermost fully expanded leaf at panicle formation and booting stages. Grain yield was also measured at the end of the season. The analysis of variance, variogram, and kriging were calculated to determine the variability of attributes and their relationship, and finally, variability maps were created. Significant linear relationships were observed between attributes, with the same trends in different sampling dates; however, accuracy of semivariance estimation reduces with the growth stage. Results of the study also implied that there was a better relationship between rice leaf N content (R2 = 0.93), as well as yield (R2 = 0.81), with SPAD readings at the panicle formation stage. Therefore, the SPAD-based evaluation of N status and prediction of rice yield is more reliable on this stage rather than at the booting stage. This study proved that the application of SPAD chlorophyll meter paves the way for real-time paddy N management and grain yield estimation. It can be reliably exploited in precision agriculture of paddy fields under double-cropping cultivation to understand and control spatial variations.
Klasifikace
Druh
J<sub>SC</sub> - Článek v periodiku v databázi SCOPUS
CEP obor
—
OECD FORD obor
20201 - Electrical and electronic engineering
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Information Processing in Agriculture
ISSN
2214-3173
e-ISSN
—
Svazek periodika
4
Číslo periodika v rámci svazku
4
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
10
Strana od-do
259-268
Kód UT WoS článku
—
EID výsledku v databázi Scopus
2-s2.0-85032176882