Soil organic carbon and texture retrieving and mapping using proximal, airborne and Sentinel-2 spectral imaging
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60076658%3A12520%2F18%3A43897574" target="_blank" >RIV/60076658:12520/18:43897574 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/00027049:_____/18:N0000066
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S0034425718304267" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0034425718304267</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.rse.2018.09.015" target="_blank" >10.1016/j.rse.2018.09.015</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Soil organic carbon and texture retrieving and mapping using proximal, airborne and Sentinel-2 spectral imaging
Popis výsledku v původním jazyce
Soil Organic Carbon (SOC) is a useful representative of soil fertility and an essential parameter in controlling the dynamics of various agrochemicals in soil. Soil texture is also used to calculate soil's ability to retain water for plant growth. SOC and soil texture are thus important parameters of agricultural soils and need to be regularly monitored. Optical satellite remote sensing offers the potential for frequent surveys over large areas. In addition, the recently-operated Sentinel-2 missions provide free imagery. This study compared the capabilities of Sentinel 2 for monitoring and mapping of SOC and soil texture (clay, silt and sand content) with those obtained from airborne hyperspectral (CASI/SASI sensors) and lab ASD FieldSpec spectroradiometer measurements at four agricultural sites in the Czech Republic. Combination of 10 extracted bands of the Sentinel-2 and 18 spectral indices, as independent variables, were used to train prediction models and then produce spatial distribution maps of the selected attributes. Results showed that the prediction accuracy based on lab spectroscopy, airborne and Sentinel-2 in the majority of the sites was adequate for SOC and fair for clay; however, Sentinel-2 imagery could not be used to detect and map variations in silt and sand. The SOC and clay maps derived from the airborne and spaceborne datasets showed similar trend, with both performing better where SOC levels were relatively high, though at the highest levels Sentinel-2 was able to create the SOC map more precisely than the airborne sensors. Taken across all SOC levels measured in the reference data, Sentinel-2 results were marginally lower than lab spectroscopy and airborne imagery, but this reduction in precision may be offset by the extensive geographical coverage and more frequent revisit characteristic of satellite observation. The increased temporal revisit and area are expected to be positive enhancements to the acquisition of high-quality information on variations in SOC and clay content of bare soils.
Název v anglickém jazyce
Soil organic carbon and texture retrieving and mapping using proximal, airborne and Sentinel-2 spectral imaging
Popis výsledku anglicky
Soil Organic Carbon (SOC) is a useful representative of soil fertility and an essential parameter in controlling the dynamics of various agrochemicals in soil. Soil texture is also used to calculate soil's ability to retain water for plant growth. SOC and soil texture are thus important parameters of agricultural soils and need to be regularly monitored. Optical satellite remote sensing offers the potential for frequent surveys over large areas. In addition, the recently-operated Sentinel-2 missions provide free imagery. This study compared the capabilities of Sentinel 2 for monitoring and mapping of SOC and soil texture (clay, silt and sand content) with those obtained from airborne hyperspectral (CASI/SASI sensors) and lab ASD FieldSpec spectroradiometer measurements at four agricultural sites in the Czech Republic. Combination of 10 extracted bands of the Sentinel-2 and 18 spectral indices, as independent variables, were used to train prediction models and then produce spatial distribution maps of the selected attributes. Results showed that the prediction accuracy based on lab spectroscopy, airborne and Sentinel-2 in the majority of the sites was adequate for SOC and fair for clay; however, Sentinel-2 imagery could not be used to detect and map variations in silt and sand. The SOC and clay maps derived from the airborne and spaceborne datasets showed similar trend, with both performing better where SOC levels were relatively high, though at the highest levels Sentinel-2 was able to create the SOC map more precisely than the airborne sensors. Taken across all SOC levels measured in the reference data, Sentinel-2 results were marginally lower than lab spectroscopy and airborne imagery, but this reduction in precision may be offset by the extensive geographical coverage and more frequent revisit characteristic of satellite observation. The increased temporal revisit and area are expected to be positive enhancements to the acquisition of high-quality information on variations in SOC and clay content of bare soils.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20705 - Remote sensing
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Remote Sensing of Environment
ISSN
0034-4257
e-ISSN
—
Svazek periodika
218
Číslo periodika v rámci svazku
12/2018
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
15
Strana od-do
89-103
Kód UT WoS článku
000449449800007
EID výsledku v databázi Scopus
2-s2.0-85053836935